High-energy pulsed laser radiation may be the most feasible means to mitigate the threat of collision of a space station or other valuable space assets with orbital debris in the size range of 1–10 cm. Under laser ir...High-energy pulsed laser radiation may be the most feasible means to mitigate the threat of collision of a space station or other valuable space assets with orbital debris in the size range of 1–10 cm. Under laser irradiation, part of the debris material is ablated and provides an impulse to the debris particle. Proper direction of the impulse vector either deflects the object trajectory or forces the debris on a trajectory through the upper atmosphere, where it burns up. Most research concentrates on ground-based laser systems but pays little attention to space-based laser systems.There are drawbacks of a ground-based laser system in cleaning space debris. Therefore the placement of a laser system in space is proposed and investigated. Under assumed conditions,the elimination process of space debris is analyzed. Several factors such as laser repetition frequency, relative movement between the laser and debris, and inclination of debris particles which may exercise influence to the elimination effects are discussed. A project of a space-based laser system is proposed according to the numerical results of a computer study. The proposed laser system can eliminate debris of 1–10 cm and succeed in protecting a space station.展开更多
Efficient electronic coupling is the key to constructing optoelectronic functionalπsystems.Generally,the delocalization ofπelectrons must comply with the framework constructed by covalent bonds(typicallyσbonds),rep...Efficient electronic coupling is the key to constructing optoelectronic functionalπsystems.Generally,the delocalization ofπelectrons must comply with the framework constructed by covalent bonds(typicallyσbonds),representing classic through-bond conjuga-tion.However,through-space conjugation offers an alternative that achieves spatial electron communica-tionwith closely stacked π systems instead of covalent bonds thus enabling multidimensional energy and charge transport.展开更多
基金supported by the National Natural Science Foundation of China(No:11102234)Provincial Level Project of China
文摘High-energy pulsed laser radiation may be the most feasible means to mitigate the threat of collision of a space station or other valuable space assets with orbital debris in the size range of 1–10 cm. Under laser irradiation, part of the debris material is ablated and provides an impulse to the debris particle. Proper direction of the impulse vector either deflects the object trajectory or forces the debris on a trajectory through the upper atmosphere, where it burns up. Most research concentrates on ground-based laser systems but pays little attention to space-based laser systems.There are drawbacks of a ground-based laser system in cleaning space debris. Therefore the placement of a laser system in space is proposed and investigated. Under assumed conditions,the elimination process of space debris is analyzed. Several factors such as laser repetition frequency, relative movement between the laser and debris, and inclination of debris particles which may exercise influence to the elimination effects are discussed. A project of a space-based laser system is proposed according to the numerical results of a computer study. The proposed laser system can eliminate debris of 1–10 cm and succeed in protecting a space station.
基金This work was financially supported by the National Natural Science Foundation of China(21788102 and 21673082)the National Basic Research Program of Chi-na(973 Program,2015CB655004)founded by MOST+2 种基金the Guangdong Natural Science Funds for Distinguished Young Scholar(2014A030306035)the Natural Science Foundation of Guangdong Province(2016A030312002)the Innovation and Technology Commission of Hong Kong(ITC-CNERC14SC01).
文摘Efficient electronic coupling is the key to constructing optoelectronic functionalπsystems.Generally,the delocalization ofπelectrons must comply with the framework constructed by covalent bonds(typicallyσbonds),representing classic through-bond conjuga-tion.However,through-space conjugation offers an alternative that achieves spatial electron communica-tionwith closely stacked π systems instead of covalent bonds thus enabling multidimensional energy and charge transport.