Intelligent manufacturing is a general concept that is under continuous development. It can be categorized into three basic paradigms: digital manufacturing, digital-networked manufacturing, and newgeneration intelli...Intelligent manufacturing is a general concept that is under continuous development. It can be categorized into three basic paradigms: digital manufacturing, digital-networked manufacturing, and newgeneration intelligent manufacturing. New-generation intelligent manufacturing represents an indepth integration of new-generation artificial intelligence (AI) technology and advanced manufacturing technology. It runs through every link in the full life-cycle of design, production, product, and service. The concept also relates to the optimization and integration of corresponding systems; the continuous improvement of enterprises' product quality, performance, and service levels; and reduction in resources consumption. New-generation intelligent manufacturing acts as the core driving force of the new indus- trial revolution and will continue to he the main pathway for the transformation and upgrading of the manufacturing industry in the decades to come. Human-cyher-physical systems (HCPSs) reveal the tech- nological mechanisms of new-generation intelligent manufacturing and can effectively guide related the- oretical research and engineering practice. Given the sequential development, cross interaction, and iterative upgrading characteristics of the three basic paradigms of intelligent manufacturing, a technol- ogy roadmap for "parallel promotion and integrated development" should he developed in order to drive forward the intelligent transformation of the manufacturing industry in China.展开更多
An intelligent manufacturing system is a composite intelligent system comprising humans,cyber systems,and physical systems with the aim of achieving specific manufacturing goals at an optimized level.This kind of inte...An intelligent manufacturing system is a composite intelligent system comprising humans,cyber systems,and physical systems with the aim of achieving specific manufacturing goals at an optimized level.This kind of intelligent system is called a human-cyber-physical system(HCPS).In terms of technology,HCPSs can both reveal technological principles and form the technological architecture for intelligent manufacturing.It can be concluded that the essence of intelligent manufacturing is to design,construct,and apply HCPSs in various cases and at different levels.With advances in information technology,intelligent manufacturing has passed through the stages of digital manufacturing and digital-networked manufacturing,and is evolving toward new-generation intelligent manufacturing(NGIM).NGIM is characterized by the in-depth integration of new-generation artificial intelligence(AI)technology(i.e.,enabling technology)with advanced manufacturing technology(i.e.,root technology);it is the core driving force of the new industrial revolution.In this study,the evolutionary footprint of intelligent manufacturing is reviewed from the perspective of HCPSs,and the implications,characteristics,technical frame,and key technologies of HCPSs for NGIM are then discussed in depth.Finally,an outlook of the major challenges of HCPSs for NGIM is proposed.展开更多
Intelligent technologies are leading to the next wave of industrial revolution in manufacturing.In developed economies,firms are embracing these advanced technologies following a sequential upgrading strategy-from dig...Intelligent technologies are leading to the next wave of industrial revolution in manufacturing.In developed economies,firms are embracing these advanced technologies following a sequential upgrading strategy-from digital manufacturing to smart manufacturing(digital-networked),and then to newgeneration intelligent manufacturing paradigms.However,Chinese firms face a different scenario.On the one hand,they have diverse technological bases that vary from low-end electrified machinery to leading-edge digital-network technologies;thus,they may not follow an identical upgrading pathway.On the other hand,Chinese firms aim to rapidly catch up and transition from technology followers to probable frontrunners;thus,the turbulences in the transitioning phase may trigger a precious opportunity for leapfrogging,if Chinese manufacturers can swiftly acquire domain expertise through the adoption of intelligent manufacturing technologies.This study addresses the following question by conducting multiple case studies:Can Chinese firms upgrade intelligent manufacturing through different pathways than the sequential one followed in developed economies?The data sources include semistructured interviews and archival data.This study finds that Chinese manufacturing firms have a variety of pathways to transition across the three technological paradigms of intelligent manufacturing in nonconsecutive ways.This finding implies that Chinese firms may strategize their own upgrading pathways toward intelligent manufacturing according to their capabilities and industrial specifics;furthermore,this finding can be extended to other catching-up economies.This paper provides a strategic roadmap as an explanatory guide to manufacturing firms,policymakers,and investors.展开更多
文摘Intelligent manufacturing is a general concept that is under continuous development. It can be categorized into three basic paradigms: digital manufacturing, digital-networked manufacturing, and newgeneration intelligent manufacturing. New-generation intelligent manufacturing represents an indepth integration of new-generation artificial intelligence (AI) technology and advanced manufacturing technology. It runs through every link in the full life-cycle of design, production, product, and service. The concept also relates to the optimization and integration of corresponding systems; the continuous improvement of enterprises' product quality, performance, and service levels; and reduction in resources consumption. New-generation intelligent manufacturing acts as the core driving force of the new indus- trial revolution and will continue to he the main pathway for the transformation and upgrading of the manufacturing industry in the decades to come. Human-cyher-physical systems (HCPSs) reveal the tech- nological mechanisms of new-generation intelligent manufacturing and can effectively guide related the- oretical research and engineering practice. Given the sequential development, cross interaction, and iterative upgrading characteristics of the three basic paradigms of intelligent manufacturing, a technol- ogy roadmap for "parallel promotion and integrated development" should he developed in order to drive forward the intelligent transformation of the manufacturing industry in China.
文摘An intelligent manufacturing system is a composite intelligent system comprising humans,cyber systems,and physical systems with the aim of achieving specific manufacturing goals at an optimized level.This kind of intelligent system is called a human-cyber-physical system(HCPS).In terms of technology,HCPSs can both reveal technological principles and form the technological architecture for intelligent manufacturing.It can be concluded that the essence of intelligent manufacturing is to design,construct,and apply HCPSs in various cases and at different levels.With advances in information technology,intelligent manufacturing has passed through the stages of digital manufacturing and digital-networked manufacturing,and is evolving toward new-generation intelligent manufacturing(NGIM).NGIM is characterized by the in-depth integration of new-generation artificial intelligence(AI)technology(i.e.,enabling technology)with advanced manufacturing technology(i.e.,root technology);it is the core driving force of the new industrial revolution.In this study,the evolutionary footprint of intelligent manufacturing is reviewed from the perspective of HCPSs,and the implications,characteristics,technical frame,and key technologies of HCPSs for NGIM are then discussed in depth.Finally,an outlook of the major challenges of HCPSs for NGIM is proposed.
基金This research is supported by the National Natural Science Foundation of China(91646102,L1824039,L1724034,L1624045,and L1524015)the project of China’s Ministry of Education(16JDGC011)+6 种基金the Chinese Academy of Engineering’s consultancy project(2019-ZD-9)the National Science and Technology Major Project(2016ZX04005002)Beijing Natural Science Foundation Project(9182013)the technology projects of the Chinese Academy of Engineering’s China Knowledge Center for Engineering Sciences(CKCEST-2019-2-13,CKCEST-2018-1-13,CKCEST-2017-1-10,and CKCEST-2015-4-2)the UK–China Industry Academia Partnership Programme(UK-CIAPP\260)the Volvo-supported Green Economy and Sustainable Development Projects in the Tsinghua University(20153000181)Tsinghua Initiative Research(2016THZW).
文摘Intelligent technologies are leading to the next wave of industrial revolution in manufacturing.In developed economies,firms are embracing these advanced technologies following a sequential upgrading strategy-from digital manufacturing to smart manufacturing(digital-networked),and then to newgeneration intelligent manufacturing paradigms.However,Chinese firms face a different scenario.On the one hand,they have diverse technological bases that vary from low-end electrified machinery to leading-edge digital-network technologies;thus,they may not follow an identical upgrading pathway.On the other hand,Chinese firms aim to rapidly catch up and transition from technology followers to probable frontrunners;thus,the turbulences in the transitioning phase may trigger a precious opportunity for leapfrogging,if Chinese manufacturers can swiftly acquire domain expertise through the adoption of intelligent manufacturing technologies.This study addresses the following question by conducting multiple case studies:Can Chinese firms upgrade intelligent manufacturing through different pathways than the sequential one followed in developed economies?The data sources include semistructured interviews and archival data.This study finds that Chinese manufacturing firms have a variety of pathways to transition across the three technological paradigms of intelligent manufacturing in nonconsecutive ways.This finding implies that Chinese firms may strategize their own upgrading pathways toward intelligent manufacturing according to their capabilities and industrial specifics;furthermore,this finding can be extended to other catching-up economies.This paper provides a strategic roadmap as an explanatory guide to manufacturing firms,policymakers,and investors.
基金自然科学基金(70671083)教育部"新世纪优秀人才支持计划"(NCET-07-0668)+5 种基金西安交通大学"985工程"二期重点项目(07200701)"长江学者"奖励计划长江学者和创新团队发展计划(IRT0855)美国Santa Fe Institute国际项目基金斯坦福大学联合资助项目陕西省社科基金(08H002)