This paper investigates nonlinear dynamical behaviors in transverse motion of an axially accelerating viscoelastic beam via the differential quadrature method. The governing equation, a nonlinear partial-differential ...This paper investigates nonlinear dynamical behaviors in transverse motion of an axially accelerating viscoelastic beam via the differential quadrature method. The governing equation, a nonlinear partial-differential equation, is derived from the viscoelastic constitution relation using the material derivative. The differential quadrature scheme is developed to solve numerically the governing equation. Based on the numerical solutions, the nonlinear dynamical behaviors are identified by use of the Poincare map and the phase portrait. The bifurcation diagrams are presented in the case that the mean axial speed and the amplitude of the speed fluctuation are respectively varied while other parameters are fixed. The Lyapunov exponent and the initial value sensitivity of the different points of the beam, calculated from the time series based on the numerical solutions, are used to indicate periodic motions or chaotic motions occurring in the transverse motion of the axially accelerating viscoelastic beam.展开更多
Nonlinear partial differetial equation(NLPDE) is converted into ordinary differential equation(ODE) via a new ansatz.Using undetermined function method,the ODE obtained above is replaced by a set of algebraic equation...Nonlinear partial differetial equation(NLPDE) is converted into ordinary differential equation(ODE) via a new ansatz.Using undetermined function method,the ODE obtained above is replaced by a set of algebraic equations which are solved out with the aid of Mathematica.The exact solutions and solitary solutions of NLPDE are obtained.展开更多
In this paper, we consider a one-dimensional nonlinear partial differential equation that has the form ut + αuux + βunux - γuxx + δuxxx = F(u). A higher order lattice Bhatnager-Gross-Krook (BGK) model with an amen...In this paper, we consider a one-dimensional nonlinear partial differential equation that has the form ut + αuux + βunux - γuxx + δuxxx = F(u). A higher order lattice Bhatnager-Gross-Krook (BGK) model with an amending-function is proposed. With the Chapman-Enskog expansion, different kinds of nonlinear partial differential equations are recovered correctly from the continuous Boltzmann equation. The numerical results show that this method is very effective.展开更多
基金supported by the National Outstanding Young Scientists Fund of China(No.10725209)the National Natural Science Foundation of China(No.10672092)+1 种基金Shanghai Municipal Education Commission Scientific Research Project(No.07ZZ07)Shanghai Leading Academic Discipline Project(No.S30106)
文摘This paper investigates nonlinear dynamical behaviors in transverse motion of an axially accelerating viscoelastic beam via the differential quadrature method. The governing equation, a nonlinear partial-differential equation, is derived from the viscoelastic constitution relation using the material derivative. The differential quadrature scheme is developed to solve numerically the governing equation. Based on the numerical solutions, the nonlinear dynamical behaviors are identified by use of the Poincare map and the phase portrait. The bifurcation diagrams are presented in the case that the mean axial speed and the amplitude of the speed fluctuation are respectively varied while other parameters are fixed. The Lyapunov exponent and the initial value sensitivity of the different points of the beam, calculated from the time series based on the numerical solutions, are used to indicate periodic motions or chaotic motions occurring in the transverse motion of the axially accelerating viscoelastic beam.
基金Supported by the Natural Science Foundation of Zhejiang Province(1 0 2 0 3 7)
文摘Nonlinear partial differetial equation(NLPDE) is converted into ordinary differential equation(ODE) via a new ansatz.Using undetermined function method,the ODE obtained above is replaced by a set of algebraic equations which are solved out with the aid of Mathematica.The exact solutions and solitary solutions of NLPDE are obtained.
基金Supported by the National Natural Science Foundation of China (Grant No 10661005) the Science and Technology Plan Item of Fujian Province (Grant No 2008F5019)
文摘In this paper, we consider a one-dimensional nonlinear partial differential equation that has the form ut + αuux + βunux - γuxx + δuxxx = F(u). A higher order lattice Bhatnager-Gross-Krook (BGK) model with an amending-function is proposed. With the Chapman-Enskog expansion, different kinds of nonlinear partial differential equations are recovered correctly from the continuous Boltzmann equation. The numerical results show that this method is very effective.