The Noether and Lie symmetries as well as the conserved quantities of Hamiltonian system with fractional derivatives are es-tablished. The definitions and criteria for the fractional symmetrical transformations and qu...The Noether and Lie symmetries as well as the conserved quantities of Hamiltonian system with fractional derivatives are es-tablished. The definitions and criteria for the fractional symmetrical transformations and quasi-symmetrical transformations inthe Noether sense of Hamiltonian system are first discussed. Then, using the invariance of Hamiltonian action under the infini-tesimal transformations with respect to time, generalized coordinates and generalized momentums, the fractional Noethertheorem of the system is obtained. Further, the Lie symmetry and conserved quantity of the system are acquired. Two exam-ples are presented to illustrate the application of the results.展开更多
The fractional calculus approach in the constitutive relationship model of a generalized second grade fluid is introduced.Exact analytical solutions are obtained for a class of unsteady flows for the generalized secon...The fractional calculus approach in the constitutive relationship model of a generalized second grade fluid is introduced.Exact analytical solutions are obtained for a class of unsteady flows for the generalized second grade fluid with the fractional derivative model between two parallel plates by using the Laplace transform and Fourier transform for fractional calculus.The unsteady flows are generated by the impulsive motion or periodic oscillation of one of the plates.In addition,the solutions of the shear stresses at the plates are also determined.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 11072218)
文摘The Noether and Lie symmetries as well as the conserved quantities of Hamiltonian system with fractional derivatives are es-tablished. The definitions and criteria for the fractional symmetrical transformations and quasi-symmetrical transformations inthe Noether sense of Hamiltonian system are first discussed. Then, using the invariance of Hamiltonian action under the infini-tesimal transformations with respect to time, generalized coordinates and generalized momentums, the fractional Noethertheorem of the system is obtained. Further, the Lie symmetry and conserved quantity of the system are acquired. Two exam-ples are presented to illustrate the application of the results.
基金The project supported by the National Natural Science Foundation of China (10372007,10002003) and CNPC Innovation Fund
文摘The fractional calculus approach in the constitutive relationship model of a generalized second grade fluid is introduced.Exact analytical solutions are obtained for a class of unsteady flows for the generalized second grade fluid with the fractional derivative model between two parallel plates by using the Laplace transform and Fourier transform for fractional calculus.The unsteady flows are generated by the impulsive motion or periodic oscillation of one of the plates.In addition,the solutions of the shear stresses at the plates are also determined.