Based on the NCEP/ NCAR reanalysis data the interannual variability of the East Asian winter mon-soon (EAWM) is studied with a newly defined EAWM intensity index. The marked features for a strong (weak) winter monsoon...Based on the NCEP/ NCAR reanalysis data the interannual variability of the East Asian winter mon-soon (EAWM) is studied with a newly defined EAWM intensity index. The marked features for a strong (weak) winter monsoon include strong (weak) northerly winds along coastal East Asia, cold (warm) East Asian continent and surrounding sea and warm (cold) ocean from the subtropical central Pacific to the trop-ical western Pacific, high (low) pressure in East Asian continent and low (high) pressure in the adjacent ocean and deep (weak) East Asian trough at 500 hPa. These interannual variations are shown to be closely connected to the SST anomaly in the tropical Pacific, both in the western and eastern Pacific. The results suggest that the strength of the EAWM is mainly influenced by the processes associated with the SST anom-aly over the tropical Pacific. The EAWM generally becomes weak when there is a positive SST anomaly in the tropical eastern Pacific (El Ni?o), and it becomes strong when there is a negative SST anomaly (La Ni?a). Moreover, the SST anomaly in the South China Sea is found to be closely related to the EAWM and may persist to the following summer. Both the circulation at 850 hPa and the rainfall in China confirm the connection between the EAWM and the following East Asian summer monsoon. The possible reason for the recent 1998 summer flood in China is briefly discussed too. Key words East Asian winter monsoon - Interannual variability - SST - Summer monsoon This study was supported by “ National Key Programme for Developing Basic Sciences” G1998040900 part 1, and by key project (KZ 952-S1-404) of Chinese Academy of Sciences.展开更多
Based on the EAP (East Asia/Pacific) teleconnection in the summer circulation anomalies over the Northern Hemisphere, an index measuring the strength of the East Asian summer monsoon, i.e., the so-called EAP index, is...Based on the EAP (East Asia/Pacific) teleconnection in the summer circulation anomalies over the Northern Hemisphere, an index measuring the strength of the East Asian summer monsoon, i.e., the so-called EAP index, is defined in this paper. From the analyses of observed data, it is clearly shown that the EAP index defined in this study can well describe the interannual variability of summer rainfall and surface air temperature in East Asia, especially in the Yangtze River valley and the Huaihe River valley, Korea, and Japan. Moreover, this index can also reflect the interannual variability of the East Asian summer monsoon system including the monsoon horizontal circulation and the vertical-meridional circulation cell over East Asia. From the composite analyses of climate and monsoon circulation anomalies for high EAP index and for low EAP index, respectively, it is well demonstrated that the EAP index proposed in this study can well measure the strength of the East Asian summer monsoon.展开更多
文中使用多种观测资料和分类的方法评估了IPCCAR4(政府间气候变化委员会第4次评估报告)气候模式(亦称Coupled Model Intercomparison Program 3,CMIP3)对东亚夏季风降水与环流年代际变化的模拟性能。结果表明,在评估的19个模式中,有9个...文中使用多种观测资料和分类的方法评估了IPCCAR4(政府间气候变化委员会第4次评估报告)气候模式(亦称Coupled Model Intercomparison Program 3,CMIP3)对东亚夏季风降水与环流年代际变化的模拟性能。结果表明,在评估的19个模式中,有9个模式可以较好地再现中国东部地区多年平均降水场,但仅有3个模式(第1类模式)可以较好地对东亚夏季风降水的年代际变化作出模拟,这3个模式是:GFDL-CM2.0、MIROC3.2(hires)和MIROC3.2(medres),其中模式GFDL-CM2.0具有最好的模拟性能。进一步的分析表明,大部分模式对东亚夏季风变化模拟能力的缺乏是因为这些模式没有抓住东亚夏季风降水变化的主要动力和热力学机制,即东亚地区在过去所出现的大范围对流层变冷和变干。而第1类模式由于较好地再现了东亚地区垂直速度场(动力学因子)和水汽场(热力学因子)的变化特征,因此较好地模拟出中国东部南涝北旱的气候变化特征。本文的评估清楚地表明,当选择不同模式进行集合时,模式对某一研究变量的模拟性能好坏极大地影响了集合的结果。当模拟性能较好的模式在一起进行集合时,所得到的结果更加接近于真实的观测结果。就特定的研究变量而言,这种集合更加优于将可得到的所有模式进行集合。这说明,虽然多模式集合一般优于单个模式的结果,但应考虑使参与集合的模式对所研究变量具有一定的模拟能力。展开更多
文摘Based on the NCEP/ NCAR reanalysis data the interannual variability of the East Asian winter mon-soon (EAWM) is studied with a newly defined EAWM intensity index. The marked features for a strong (weak) winter monsoon include strong (weak) northerly winds along coastal East Asia, cold (warm) East Asian continent and surrounding sea and warm (cold) ocean from the subtropical central Pacific to the trop-ical western Pacific, high (low) pressure in East Asian continent and low (high) pressure in the adjacent ocean and deep (weak) East Asian trough at 500 hPa. These interannual variations are shown to be closely connected to the SST anomaly in the tropical Pacific, both in the western and eastern Pacific. The results suggest that the strength of the EAWM is mainly influenced by the processes associated with the SST anom-aly over the tropical Pacific. The EAWM generally becomes weak when there is a positive SST anomaly in the tropical eastern Pacific (El Ni?o), and it becomes strong when there is a negative SST anomaly (La Ni?a). Moreover, the SST anomaly in the South China Sea is found to be closely related to the EAWM and may persist to the following summer. Both the circulation at 850 hPa and the rainfall in China confirm the connection between the EAWM and the following East Asian summer monsoon. The possible reason for the recent 1998 summer flood in China is briefly discussed too. Key words East Asian winter monsoon - Interannual variability - SST - Summer monsoon This study was supported by “ National Key Programme for Developing Basic Sciences” G1998040900 part 1, and by key project (KZ 952-S1-404) of Chinese Academy of Sciences.
基金supported jointly by the National Key Basic Research Development Program(Grant No.G1999043403)the Knowledge Innovation Project of the Chinese Academy of Sciences(CAS)(Grant No.KZCX3-SW-218)+1 种基金the National Natural Science Foundation of China project for young scientists fund(No.40305012) the Western Project of the CAS (KZCX1-10-07).
文摘Based on the EAP (East Asia/Pacific) teleconnection in the summer circulation anomalies over the Northern Hemisphere, an index measuring the strength of the East Asian summer monsoon, i.e., the so-called EAP index, is defined in this paper. From the analyses of observed data, it is clearly shown that the EAP index defined in this study can well describe the interannual variability of summer rainfall and surface air temperature in East Asia, especially in the Yangtze River valley and the Huaihe River valley, Korea, and Japan. Moreover, this index can also reflect the interannual variability of the East Asian summer monsoon system including the monsoon horizontal circulation and the vertical-meridional circulation cell over East Asia. From the composite analyses of climate and monsoon circulation anomalies for high EAP index and for low EAP index, respectively, it is well demonstrated that the EAP index proposed in this study can well measure the strength of the East Asian summer monsoon.
文摘文中使用多种观测资料和分类的方法评估了IPCCAR4(政府间气候变化委员会第4次评估报告)气候模式(亦称Coupled Model Intercomparison Program 3,CMIP3)对东亚夏季风降水与环流年代际变化的模拟性能。结果表明,在评估的19个模式中,有9个模式可以较好地再现中国东部地区多年平均降水场,但仅有3个模式(第1类模式)可以较好地对东亚夏季风降水的年代际变化作出模拟,这3个模式是:GFDL-CM2.0、MIROC3.2(hires)和MIROC3.2(medres),其中模式GFDL-CM2.0具有最好的模拟性能。进一步的分析表明,大部分模式对东亚夏季风变化模拟能力的缺乏是因为这些模式没有抓住东亚夏季风降水变化的主要动力和热力学机制,即东亚地区在过去所出现的大范围对流层变冷和变干。而第1类模式由于较好地再现了东亚地区垂直速度场(动力学因子)和水汽场(热力学因子)的变化特征,因此较好地模拟出中国东部南涝北旱的气候变化特征。本文的评估清楚地表明,当选择不同模式进行集合时,模式对某一研究变量的模拟性能好坏极大地影响了集合的结果。当模拟性能较好的模式在一起进行集合时,所得到的结果更加接近于真实的观测结果。就特定的研究变量而言,这种集合更加优于将可得到的所有模式进行集合。这说明,虽然多模式集合一般优于单个模式的结果,但应考虑使参与集合的模式对所研究变量具有一定的模拟能力。