This article is devoted to the study of high order accuracy difference methods tor the Cahn-rnmara equation. A three level linearized compact difference scheme is derived. The u^ique solvability and uaconditional conv...This article is devoted to the study of high order accuracy difference methods tor the Cahn-rnmara equation. A three level linearized compact difference scheme is derived. The u^ique solvability and uaconditional convergence of the difference solution are proved. The convergence order is O(T2+h4) in the maximum norm. The mass conservation and the non-increase of the total energy are also verified. Some numerical examples are given to demonstrate the theoretical results.展开更多
In this paper, a Legendre spectral method for numerically solving Cahn-Hilliardequations with Neumann boundary conditions is developed. We establish theirsemi-discrete and fully discrete schemes that inherit the energ...In this paper, a Legendre spectral method for numerically solving Cahn-Hilliardequations with Neumann boundary conditions is developed. We establish theirsemi-discrete and fully discrete schemes that inherit the energy dissipation propertyand mass conservation property from the associated continuous problem. we provethe existence and uniqueness of the numerical solution and derive the optimal errorbounds. we perform some numerical experiments which confirm our results.展开更多
In this work, the MMC-TDGL equation, a stochastic Cahn-Hilliard equation, is solved numerically by using the finite difference method in combination with a convex splitting technique of the energy functional.For the n...In this work, the MMC-TDGL equation, a stochastic Cahn-Hilliard equation, is solved numerically by using the finite difference method in combination with a convex splitting technique of the energy functional.For the non-stochastic case, we develop an unconditionally energy stable difference scheme which is proved to be uniquely solvable. For the stochastic case, by adopting the same splitting of the energy functional, we construct a similar and uniquely solvable difference scheme with the discretized stochastic term. The resulted schemes are nonlinear and solved by Newton iteration. For the long time simulation, an adaptive time stepping strategy is developed based on both first- and second-order derivatives of the energy. Numerical experiments are carried out to verify the energy stability, the efficiency of the adaptive time stepping and the effect of the stochastic term.展开更多
This article is devoted to the discussion of large time behaviour of solutions for viscous Cahn-Hilliard equation with spatial dimension n 〈 5. Some results on global existence of weak solutions for small initial val...This article is devoted to the discussion of large time behaviour of solutions for viscous Cahn-Hilliard equation with spatial dimension n 〈 5. Some results on global existence of weak solutions for small initial value and blow-up of solutions for any nontrivial initial value are established.展开更多
In this paper, the MMC-TDGL equation, a stochastic Cahn-Hilliard equation with a variable interfacial parameter, is solved numerically by using a convex splitting scheme which is second-order in time for the non-stoch...In this paper, the MMC-TDGL equation, a stochastic Cahn-Hilliard equation with a variable interfacial parameter, is solved numerically by using a convex splitting scheme which is second-order in time for the non-stochastic part in combination with the Crank- Nicolson and the Adams-Bashforth methods. For the non-stochastic case, the uncondi- tional energy stability is obtained in the sense that a modified energy is non-increasing. The scheme in the stochastic version is then obtained by adding the discretized stochastic term. Numerical experiments are carried out to verify the second-order convergence rate for the non-stochastic case~ and to show the long-time stochastic evolutions using larger time steps.展开更多
This paper develops a posteriori error estimates of residual type for conforming and mixed finite element approximations of the fourth order Cahn-Hilliard equation ut + △(ε△Au-ε^-1f(u)) = 0. It is shown that ...This paper develops a posteriori error estimates of residual type for conforming and mixed finite element approximations of the fourth order Cahn-Hilliard equation ut + △(ε△Au-ε^-1f(u)) = 0. It is shown that the a posteriori error bounds depends on ε^-1 only in some low polynomial order, instead of exponential order. Using these a posteriori error estimates, we construct at2 adaptive algorithm for computing the solution of the Cahn- Hilliard equation and its sharp interface limit, the Hele-Shaw flow. Numerical experiments are presented to show the robustness and effectiveness of the new error estimators and the proposed adaptive algorithm.展开更多
Proposes an explicit fully discrete three-level pseudo-spectral scheme with unconditional stability for the Cahn-Hilliard equation. Equations for pseudo-spectral scheme; Analysis of linear stability of critical points.
In this paper, we study the regularity of solutions for two-dimensional Cahn-Hilliard equation with non-constant mobility. Basing on the L^p type estimates and Schauder type estimates, we prove the global existence of...In this paper, we study the regularity of solutions for two-dimensional Cahn-Hilliard equation with non-constant mobility. Basing on the L^p type estimates and Schauder type estimates, we prove the global existence of classical solutions.展开更多
基金supported by Natural Science Foundation of China (Grant No. 10871044)
文摘This article is devoted to the study of high order accuracy difference methods tor the Cahn-rnmara equation. A three level linearized compact difference scheme is derived. The u^ique solvability and uaconditional convergence of the difference solution are proved. The convergence order is O(T2+h4) in the maximum norm. The mass conservation and the non-increase of the total energy are also verified. Some numerical examples are given to demonstrate the theoretical results.
文摘In this paper, a Legendre spectral method for numerically solving Cahn-Hilliardequations with Neumann boundary conditions is developed. We establish theirsemi-discrete and fully discrete schemes that inherit the energy dissipation propertyand mass conservation property from the associated continuous problem. we provethe existence and uniqueness of the numerical solution and derive the optimal errorbounds. we perform some numerical experiments which confirm our results.
基金supported by the Hong Kong General Research Fund (Grant Nos. 202112, 15302214 and 509213)National Natural Science Foundation of China/Research Grants Council Joint Research Scheme (Grant Nos. N HKBU204/12 and 11261160486)+1 种基金National Natural Science Foundation of China (Grant No. 11471046)the Ministry of Education Program for New Century Excellent Talents Project (Grant No. NCET-12-0053)
文摘In this work, the MMC-TDGL equation, a stochastic Cahn-Hilliard equation, is solved numerically by using the finite difference method in combination with a convex splitting technique of the energy functional.For the non-stochastic case, we develop an unconditionally energy stable difference scheme which is proved to be uniquely solvable. For the stochastic case, by adopting the same splitting of the energy functional, we construct a similar and uniquely solvable difference scheme with the discretized stochastic term. The resulted schemes are nonlinear and solved by Newton iteration. For the long time simulation, an adaptive time stepping strategy is developed based on both first- and second-order derivatives of the energy. Numerical experiments are carried out to verify the energy stability, the efficiency of the adaptive time stepping and the effect of the stochastic term.
文摘This article is devoted to the discussion of large time behaviour of solutions for viscous Cahn-Hilliard equation with spatial dimension n 〈 5. Some results on global existence of weak solutions for small initial value and blow-up of solutions for any nontrivial initial value are established.
文摘In this paper, the MMC-TDGL equation, a stochastic Cahn-Hilliard equation with a variable interfacial parameter, is solved numerically by using a convex splitting scheme which is second-order in time for the non-stochastic part in combination with the Crank- Nicolson and the Adams-Bashforth methods. For the non-stochastic case, the uncondi- tional energy stability is obtained in the sense that a modified energy is non-increasing. The scheme in the stochastic version is then obtained by adding the discretized stochastic term. Numerical experiments are carried out to verify the second-order convergence rate for the non-stochastic case~ and to show the long-time stochastic evolutions using larger time steps.
基金the NSF grants DMS-0410266 and DMS-0710831the China National Basic Research Program under the grant 2005CB321701+1 种基金the Program for the New Century Outstanding Talents in Universities of Chinathe Natural Science Foundation of Jiangsu Province under the grant BK2006511
文摘This paper develops a posteriori error estimates of residual type for conforming and mixed finite element approximations of the fourth order Cahn-Hilliard equation ut + △(ε△Au-ε^-1f(u)) = 0. It is shown that the a posteriori error bounds depends on ε^-1 only in some low polynomial order, instead of exponential order. Using these a posteriori error estimates, we construct at2 adaptive algorithm for computing the solution of the Cahn- Hilliard equation and its sharp interface limit, the Hele-Shaw flow. Numerical experiments are presented to show the robustness and effectiveness of the new error estimators and the proposed adaptive algorithm.
文摘Proposes an explicit fully discrete three-level pseudo-spectral scheme with unconditional stability for the Cahn-Hilliard equation. Equations for pseudo-spectral scheme; Analysis of linear stability of critical points.
基金the Tianyuan Fund for Mathematics(No.10526022)the 985 program of Jilin University
文摘In this paper, we study the regularity of solutions for two-dimensional Cahn-Hilliard equation with non-constant mobility. Basing on the L^p type estimates and Schauder type estimates, we prove the global existence of classical solutions.