The effect of lanthanum content in the range of 04).01 1 wt.%, on the inclusion size distribution, microstructure, texture and magnetic properties of three non-oriented electrical steels was studied. After final anne...The effect of lanthanum content in the range of 04).01 1 wt.%, on the inclusion size distribution, microstructure, texture and magnetic properties of three non-oriented electrical steels was studied. After final annealing, lanthanum effectively inhibited the precipitation of MnS precipitates in steel, the formations of La2O2S and LaS inclusions not only acted as nuclei of AlN precipitates, but also combined with A1203 and formed composite inclusions with larger size. Grain size firstly increased and then decreased with lanthanum content increasing. Steel containing 0.0066 wt.% lanthanum obtained the largest grain size, the strongest { 110} 〈 110〉 texture and the weakest { 112}〈110〉 texture among all the tested steels. Magnetic flux density firstly increased and then decreased, core loss firstly dramatically decreased and then slightly decreased with lanthanum content increasing. Among the three tested steels, steel with 0.0066 wt.% lanthanum demonstrated the best comprehensive magnetic properties mainly through the development of favorable texture and appropriate final grain size.展开更多
The yield asymmetry between compression and tension of magnesium alloy Mg-3Al-1Zn(AZ31) with different grain sizes and textures has been studied by tensile and compressive testing of as-cast,as-extruded and equal ch...The yield asymmetry between compression and tension of magnesium alloy Mg-3Al-1Zn(AZ31) with different grain sizes and textures has been studied by tensile and compressive testing of as-cast,as-extruded and equal channel angular pressed(ECAPed) specimens.The significant yield asymmetry(the ratio of yield strength between compression and tension σyc/σyt is ~0.44) was found in as-extruded specimens and the corresponding microstructure evolution during deformation revealed that {10 ˉ 12} tensile twinning is the underlying reason for the large yield asymmetry.Strong texture and grain size are influential factors for large yield asymmetry.The separate contributions of grain size and texture on yield asymmetry were investigated.展开更多
To develop a new magnesium alloy with excellent formability at room temperature, the effect of Y, Ce, and Gd addition on texture and stretch formability of Mg-1.5Zn alloys was carried out. The result shows that Y, Ce,...To develop a new magnesium alloy with excellent formability at room temperature, the effect of Y, Ce, and Gd addition on texture and stretch formability of Mg-1.5Zn alloys was carried out. The result shows that Y, Ce, and Gd addition in Mg-1.5Zn alloys can effectively weaken and modify the basal plane texture, characterized by TD-split texture in which the position of basal is titled from normal direction (ND) toward transverse direction (TD). When Mg-1.5Zn alloy with Gd addition appears low texture intensity and TD-split texture, where the position of basal poles is tilted by about 4-35° from ND toward to TD, the largest Erichsen value of 7.0 and the elongation rate reaches 29.1% in TD direction. However, Y and Ce addition in Mg-1.5Zn alloys promote a large number of second phase particles, which cancel the contribution of the unique basal texture to stretch formability and ductility.展开更多
Texture is inevitably introduced during the manufacturing of most NiTi shape memory alloys(SMAs),and the textured nanocrystalline NiTi has been extensively employed in engineering.However,the effect of texture,and the...Texture is inevitably introduced during the manufacturing of most NiTi shape memory alloys(SMAs),and the textured nanocrystalline NiTi has been extensively employed in engineering.However,the effect of texture,and the joint effect of grain size(GS)and texture on the functional properties of NiTi SMAs and the corresponding microscopic mechanisms have not been clearly understood yet.In this work,based on the phase field method,the effect of texture on the GS-dependent functional properties of NiTi SMAs,including super-elasticity(SE),one-way shape memory effect(OWSME),and stress-assisted two-way shape memory effect(SATWSME),is investigated,and the corresponding microscopic mechanisms are revealed.Moreover,the samples with discrete geometrical gradients and/or texture gradients are designed to achieve graded functional properties.The simulation results indicate that the dependence of functional properties on texture is due to the effect of crystallographic orientation on martensite transformation and reorientation,which can lead to different inelastic strains.In the designed samples with texture gradients,the stress–strain responses of sheets with various textures are different,allowing for the coordination of overall deformation of the sample by combining such sheets,with varying inelastic deformation degrees.Thus,the overall response of the sample differs from that without texture gradient,leading to the achievement of graded functional properties.The simulation results and new findings in this work contribute to a deeper understanding of the effects of texture,GS,and their interaction on the functional properties of SMAs,and provide valuable reference for the design and development of SMA-based devices with desired functional properties.展开更多
C-axis oriented Ga-doped ZnO(GZO) films with various thicknesses were deposited on glass substrate by radio frequency(RF) magnetron sputtering. The dependence of crystal structure,electrical,and optical properties of ...C-axis oriented Ga-doped ZnO(GZO) films with various thicknesses were deposited on glass substrate by radio frequency(RF) magnetron sputtering. The dependence of crystal structure,electrical,and optical properties of the GZO films on crystalline size were systematically studied. The results showed that the texture coefficient of (002) peak (TC(002)) decreases with increasing crystalline size. The Hall mobility m was reciprocal to electron effective mass and the fitted relaxation time s was 0.11±0.01 ms. With the increase of average crystalline size,the resistivity increased slightly,which is caused by the competition of (002) and(101) plane,introducing in some defects and leading to carrier density reduction. The optical band gap was in the range from 3.454 to 3.319 eV with increasing crystalline size from 26.96 to 30.88 nm,showing a negative relationship. The dependence of optical band gap (Eopg) on the crystalline size(R) can be qualitatively explained by a quantum confinement effect. The relationship between Eopg and R of GZO films suggests that tuning up optical properties for desired applications can be achieved by controlling the crystalline size.展开更多
The effects of boron content in the range of 0-0.0082 wt%, on the inclusion type, microstructurc, texture and magnetic properties of non-oriented electrical steels have been studied. After final annealing, the additio...The effects of boron content in the range of 0-0.0082 wt%, on the inclusion type, microstructurc, texture and magnetic properties of non-oriented electrical steels have been studied. After final annealing, the addition of excess boron(w(B0〉0.004 1 wt%) led to the formation of Fe2B particles. As boron content increased, grain size increased and reached a maximum in steel with 0.004 1 wt% boron. Furthermore, steel containing 0.004 1 wt% boron had the strongest { 100} fiber texture, Goss texture and the weakest { 111 } fiber texture among the five tested steels. Flux density firstly rapidly increased and then suddenly decreased with increasing boron content and reached a maximum in steel with 0.004 1 wt% boron. Conversely, core loss first sharply decreased and then abruptly increased with the increase of boron content and reached a minimum in steel containing 0.004 1 wt% boron. Steel containing 0.004 1 wt% boron obtained the best magnetic properties, predominantly through the development of optimum grain size and favorable texture.展开更多
文摘The effect of lanthanum content in the range of 04).01 1 wt.%, on the inclusion size distribution, microstructure, texture and magnetic properties of three non-oriented electrical steels was studied. After final annealing, lanthanum effectively inhibited the precipitation of MnS precipitates in steel, the formations of La2O2S and LaS inclusions not only acted as nuclei of AlN precipitates, but also combined with A1203 and formed composite inclusions with larger size. Grain size firstly increased and then decreased with lanthanum content increasing. Steel containing 0.0066 wt.% lanthanum obtained the largest grain size, the strongest { 110} 〈 110〉 texture and the weakest { 112}〈110〉 texture among all the tested steels. Magnetic flux density firstly increased and then decreased, core loss firstly dramatically decreased and then slightly decreased with lanthanum content increasing. Among the three tested steels, steel with 0.0066 wt.% lanthanum demonstrated the best comprehensive magnetic properties mainly through the development of favorable texture and appropriate final grain size.
基金supported by the National Natural Science Foundation of China under Grant Nos.50471082 and 50571102
文摘The yield asymmetry between compression and tension of magnesium alloy Mg-3Al-1Zn(AZ31) with different grain sizes and textures has been studied by tensile and compressive testing of as-cast,as-extruded and equal channel angular pressed(ECAPed) specimens.The significant yield asymmetry(the ratio of yield strength between compression and tension σyc/σyt is ~0.44) was found in as-extruded specimens and the corresponding microstructure evolution during deformation revealed that {10 ˉ 12} tensile twinning is the underlying reason for the large yield asymmetry.Strong texture and grain size are influential factors for large yield asymmetry.The separate contributions of grain size and texture on yield asymmetry were investigated.
基金supported by the Ministry of Science and Technology ‘‘Twelfth Five-Year’’ Plan for Science & Technology Support(No.2011BAE22B00)
文摘To develop a new magnesium alloy with excellent formability at room temperature, the effect of Y, Ce, and Gd addition on texture and stretch formability of Mg-1.5Zn alloys was carried out. The result shows that Y, Ce, and Gd addition in Mg-1.5Zn alloys can effectively weaken and modify the basal plane texture, characterized by TD-split texture in which the position of basal is titled from normal direction (ND) toward transverse direction (TD). When Mg-1.5Zn alloy with Gd addition appears low texture intensity and TD-split texture, where the position of basal poles is tilted by about 4-35° from ND toward to TD, the largest Erichsen value of 7.0 and the elongation rate reaches 29.1% in TD direction. However, Y and Ce addition in Mg-1.5Zn alloys promote a large number of second phase particles, which cancel the contribution of the unique basal texture to stretch formability and ductility.
基金The National Natural Science Foundation of China(12202294 and 12022208)the Project funded by China Postdoctoral Science Foundation(2022M712243)the Fundamental Research Funds for the Central Universities(2023SCU12098)are acknowledged.
文摘Texture is inevitably introduced during the manufacturing of most NiTi shape memory alloys(SMAs),and the textured nanocrystalline NiTi has been extensively employed in engineering.However,the effect of texture,and the joint effect of grain size(GS)and texture on the functional properties of NiTi SMAs and the corresponding microscopic mechanisms have not been clearly understood yet.In this work,based on the phase field method,the effect of texture on the GS-dependent functional properties of NiTi SMAs,including super-elasticity(SE),one-way shape memory effect(OWSME),and stress-assisted two-way shape memory effect(SATWSME),is investigated,and the corresponding microscopic mechanisms are revealed.Moreover,the samples with discrete geometrical gradients and/or texture gradients are designed to achieve graded functional properties.The simulation results indicate that the dependence of functional properties on texture is due to the effect of crystallographic orientation on martensite transformation and reorientation,which can lead to different inelastic strains.In the designed samples with texture gradients,the stress–strain responses of sheets with various textures are different,allowing for the coordination of overall deformation of the sample by combining such sheets,with varying inelastic deformation degrees.Thus,the overall response of the sample differs from that without texture gradient,leading to the achievement of graded functional properties.The simulation results and new findings in this work contribute to a deeper understanding of the effects of texture,GS,and their interaction on the functional properties of SMAs,and provide valuable reference for the design and development of SMA-based devices with desired functional properties.
基金supported by the National Natural Science Foundation of China (No.51071038)Sichuan Province Science Foundation for Youths (No.2010JQ0002)State Key Laboratory for Mechanical Behavior of Materials,Xi’an Jiaotong University,China (No.20131309)
文摘C-axis oriented Ga-doped ZnO(GZO) films with various thicknesses were deposited on glass substrate by radio frequency(RF) magnetron sputtering. The dependence of crystal structure,electrical,and optical properties of the GZO films on crystalline size were systematically studied. The results showed that the texture coefficient of (002) peak (TC(002)) decreases with increasing crystalline size. The Hall mobility m was reciprocal to electron effective mass and the fitted relaxation time s was 0.11±0.01 ms. With the increase of average crystalline size,the resistivity increased slightly,which is caused by the competition of (002) and(101) plane,introducing in some defects and leading to carrier density reduction. The optical band gap was in the range from 3.454 to 3.319 eV with increasing crystalline size from 26.96 to 30.88 nm,showing a negative relationship. The dependence of optical band gap (Eopg) on the crystalline size(R) can be qualitatively explained by a quantum confinement effect. The relationship between Eopg and R of GZO films suggests that tuning up optical properties for desired applications can be achieved by controlling the crystalline size.
基金financial supports by the Xinyu Iron and Steel Company of China
文摘The effects of boron content in the range of 0-0.0082 wt%, on the inclusion type, microstructurc, texture and magnetic properties of non-oriented electrical steels have been studied. After final annealing, the addition of excess boron(w(B0〉0.004 1 wt%) led to the formation of Fe2B particles. As boron content increased, grain size increased and reached a maximum in steel with 0.004 1 wt% boron. Furthermore, steel containing 0.004 1 wt% boron had the strongest { 100} fiber texture, Goss texture and the weakest { 111 } fiber texture among the five tested steels. Flux density firstly rapidly increased and then suddenly decreased with increasing boron content and reached a maximum in steel with 0.004 1 wt% boron. Conversely, core loss first sharply decreased and then abruptly increased with the increase of boron content and reached a minimum in steel containing 0.004 1 wt% boron. Steel containing 0.004 1 wt% boron obtained the best magnetic properties, predominantly through the development of optimum grain size and favorable texture.