Optogenetics,a technique that employs light for neuromodulation,has revolutionized the study of neural mechanisms and the treatment of neurological disorders due to its high spatiotemporal resolution and cell-type spe...Optogenetics,a technique that employs light for neuromodulation,has revolutionized the study of neural mechanisms and the treatment of neurological disorders due to its high spatiotemporal resolution and cell-type specificity.However,visible light,particularly blue and green light,commonly used in conventional optogenetics,has limited penetration in biological tissue.This limitation necessitates the implantation of optical fibers for light delivery,especially in deep brain regions,leading to tissue damage and experimental constraints.To overcome these challenges,the use of orange-red and infrared light with greater tissue penetration has emerged as a promising approach for tetherless optical neuromodulation.In this review,we provide an overview of the development and applications of tetherless optical neuromodulation methods with long wavelengths.We first discuss the exploration of orange-red wavelength-responsive rhodopsins and their performance in tetherless optical neuromodulation.Then,we summarize two novel tetherless neuromodulation methods using near-infrared light:upconversion nanoparticle-mediated optogenetics and photothermal neuromodulation.In addition,we discuss recent advances in mid-infrared optical neuromodulation.展开更多
基金supported by China Postdoctoral Science Foundation(2022M723356),"From 0 to 1"Original Innovation Project of the Basic Frontier Scientific Research Program of the Chinese Academy of Sciences(29J20-015-Ⅲ)Chinese Academy of Sciences 100 Talents Project:Research on Task oriented Functional Brain Development of Infants(29J20-052-Ⅲ)Natural Science Basic Research Plan in Shaanxi Province of China(2022JQ544).
文摘Optogenetics,a technique that employs light for neuromodulation,has revolutionized the study of neural mechanisms and the treatment of neurological disorders due to its high spatiotemporal resolution and cell-type specificity.However,visible light,particularly blue and green light,commonly used in conventional optogenetics,has limited penetration in biological tissue.This limitation necessitates the implantation of optical fibers for light delivery,especially in deep brain regions,leading to tissue damage and experimental constraints.To overcome these challenges,the use of orange-red and infrared light with greater tissue penetration has emerged as a promising approach for tetherless optical neuromodulation.In this review,we provide an overview of the development and applications of tetherless optical neuromodulation methods with long wavelengths.We first discuss the exploration of orange-red wavelength-responsive rhodopsins and their performance in tetherless optical neuromodulation.Then,we summarize two novel tetherless neuromodulation methods using near-infrared light:upconversion nanoparticle-mediated optogenetics and photothermal neuromodulation.In addition,we discuss recent advances in mid-infrared optical neuromodulation.