As a type of energy storage device between traditional capacitors and batteries,the supercapacitor has the advantages of energy saving and environmental protection,high power density,fast charging and discharging spee...As a type of energy storage device between traditional capacitors and batteries,the supercapacitor has the advantages of energy saving and environmental protection,high power density,fast charging and discharging speed,long cycle life,and so forth.One of the key factors affecting the performance of supercapacitor is the electrode material.Carbon materials,such as carbon nanotube,graphene,activated carbon,and carbon nanocage,are most widely concerned in the application of supercapacitors.The synergistic effect of composites can often obtain excellent results,which is one of the common strategies to increase the electrochemical performance of supercapacitors.To further improve the performance of binary composites,it is a relatively simple method to increase the components as the“bridge”between the two materials to form the ternary composites.The review mainly introduces the current research progress of supercapacitors with pure carbon nanomaterials and multistage carbon nanostructures(composites)as electrodes.The characteristics and application directions of different pure carbon nanomaterials are introduced in detail.Different ways of multilevel structure(material)composite have their own effects on the development of high-performance supercapacitors.We also highlight the recent advances related to these fields and provide our insight into high-energy supercapacitors.展开更多
Ternary Ag/AgC l/BiO IO3 composite photocatalysts are prepared by a facile method. Enhanced visible-light absorption and charge carrier separation are achieved after the introduction of Ag/AgC l particles into BiO IO3...Ternary Ag/AgC l/BiO IO3 composite photocatalysts are prepared by a facile method. Enhanced visible-light absorption and charge carrier separation are achieved after the introduction of Ag/AgC l particles into BiO IO3 systems,as revealed by ultraviolet-visible diffuse-reflectance spectrometry,photocurrent response and electrochemical impedance spectroscopy. The Ag/AgC l/BiO IO3 composites are applied to the visible-light photocatalytic oxidization of NO in air and exhibit an enhanced activity for NO removal in comparison with Ag/AgC l and pure BiO IO3. A possible photocatalytic mechanism for Ag/AgC l/BiO IO3 is proposed,which is related to the surface plasmon resonance effects of Ag metal and the effective carrier separation ability of BiO IO3. This work provides insight into the design and preparation of BiO IO3-based materials with enhanced visible-light photocatalysis ability.展开更多
In recent decades, the demand for lightweight and high specific strength materials brings about the development of magnesium matrix composites. Different from some traditional binary ceramic particles, such as SiC, Al...In recent decades, the demand for lightweight and high specific strength materials brings about the development of magnesium matrix composites. Different from some traditional binary ceramic particles, such as SiC, Al_(2)O_(3), the novel ternary nano-layered M_(n+1)AX_(n)(MAX)phase carbide or nitride ceramics exhibit metal-like properties and self-lubricate capacity(where “M” is an early transition metal, “A” belongs to the group A element, “X” is C or/and N, and n = 1–3). Ti_(2)AlC, as the representative of the MAX phase, was interestingly introduced into the magnesium matrix. Layered Ti_(2)AlC MAX phased reinforced AZ91D magnesium composites manufactured through the stir casting exhibit sufficient deformation capacity due to unique deformation behaviors of MAX, namely delamination and the formation of kinking band. Further,the Ti_(2)AlC-AZ91D composites exhibit a distinctive characteristic in strengthening mechanism, damping mechanism and tribological capacity due to the other special properties of MAX phase, such as self-lubricated property. Accordingly, to give a comprehensive understanding, we overviewed the fabrication process, microstructural characterization, mechanical properties, damping property and tribological capacity on these composites. In order to understand the A-site effect in MAX phase on the microstructure, we introduced another representative Ti_(3)SiC_(2)MAX phase to explain the interfacial evolution. In addition, due to the high aspect ratio of MAX, MAX particles could be orientationally regulated in Mg matrix by plastic deformation such as hot extrusion. Herein, we discussed the anisotropic mechanical and physical properties of the textured composites produced by hot extrusion. Moreover, the potential applications and future development trends of MAX phases reinforced magnesium matrix composites were also given and prospected.展开更多
基金National Natural Science Foundation of China,Grant/Award Number:52102050Science&Technology Development Fund of Tianjin Education Commission for Higher Education,Grant/Award Number:2019KJ092。
文摘As a type of energy storage device between traditional capacitors and batteries,the supercapacitor has the advantages of energy saving and environmental protection,high power density,fast charging and discharging speed,long cycle life,and so forth.One of the key factors affecting the performance of supercapacitor is the electrode material.Carbon materials,such as carbon nanotube,graphene,activated carbon,and carbon nanocage,are most widely concerned in the application of supercapacitors.The synergistic effect of composites can often obtain excellent results,which is one of the common strategies to increase the electrochemical performance of supercapacitors.To further improve the performance of binary composites,it is a relatively simple method to increase the components as the“bridge”between the two materials to form the ternary composites.The review mainly introduces the current research progress of supercapacitors with pure carbon nanomaterials and multistage carbon nanostructures(composites)as electrodes.The characteristics and application directions of different pure carbon nanomaterials are introduced in detail.Different ways of multilevel structure(material)composite have their own effects on the development of high-performance supercapacitors.We also highlight the recent advances related to these fields and provide our insight into high-energy supercapacitors.
基金supported by the National Natural Science Foundation of China(5147807051108487)the Science and Technology Project from Chongqing Education Commission(KJ1400617)~~
文摘Ternary Ag/AgC l/BiO IO3 composite photocatalysts are prepared by a facile method. Enhanced visible-light absorption and charge carrier separation are achieved after the introduction of Ag/AgC l particles into BiO IO3 systems,as revealed by ultraviolet-visible diffuse-reflectance spectrometry,photocurrent response and electrochemical impedance spectroscopy. The Ag/AgC l/BiO IO3 composites are applied to the visible-light photocatalytic oxidization of NO in air and exhibit an enhanced activity for NO removal in comparison with Ag/AgC l and pure BiO IO3. A possible photocatalytic mechanism for Ag/AgC l/BiO IO3 is proposed,which is related to the surface plasmon resonance effects of Ag metal and the effective carrier separation ability of BiO IO3. This work provides insight into the design and preparation of BiO IO3-based materials with enhanced visible-light photocatalysis ability.
基金supported by the National Natural Science Foundation of China (No. 52175284, 52130509 and 52075543)the State Key Lab of Advanced Metmals and Materials (2021-ZD08)。
文摘In recent decades, the demand for lightweight and high specific strength materials brings about the development of magnesium matrix composites. Different from some traditional binary ceramic particles, such as SiC, Al_(2)O_(3), the novel ternary nano-layered M_(n+1)AX_(n)(MAX)phase carbide or nitride ceramics exhibit metal-like properties and self-lubricate capacity(where “M” is an early transition metal, “A” belongs to the group A element, “X” is C or/and N, and n = 1–3). Ti_(2)AlC, as the representative of the MAX phase, was interestingly introduced into the magnesium matrix. Layered Ti_(2)AlC MAX phased reinforced AZ91D magnesium composites manufactured through the stir casting exhibit sufficient deformation capacity due to unique deformation behaviors of MAX, namely delamination and the formation of kinking band. Further,the Ti_(2)AlC-AZ91D composites exhibit a distinctive characteristic in strengthening mechanism, damping mechanism and tribological capacity due to the other special properties of MAX phase, such as self-lubricated property. Accordingly, to give a comprehensive understanding, we overviewed the fabrication process, microstructural characterization, mechanical properties, damping property and tribological capacity on these composites. In order to understand the A-site effect in MAX phase on the microstructure, we introduced another representative Ti_(3)SiC_(2)MAX phase to explain the interfacial evolution. In addition, due to the high aspect ratio of MAX, MAX particles could be orientationally regulated in Mg matrix by plastic deformation such as hot extrusion. Herein, we discussed the anisotropic mechanical and physical properties of the textured composites produced by hot extrusion. Moreover, the potential applications and future development trends of MAX phases reinforced magnesium matrix composites were also given and prospected.