Computed tomography has been proven to be useful for non-destructive inspection of structures and materials. We build a three-dimensional imaging system with the photonically generated incoherent noise source and the ...Computed tomography has been proven to be useful for non-destructive inspection of structures and materials. We build a three-dimensional imaging system with the photonically generated incoherent noise source and the Schottky barrier diode detector in the terahertz frequency band (90–140GHz). Based on the computed tomography technique, the three-dimensional image of a ceramic sample is reconstructed successfully by stacking the slices at different heights. The imaging results not only indicate the ability of terahertz wave in the non-invasive sensing and non-destructive inspection applications, but also prove the effectiveness and superiority of the uni-traveling-carrier photodiode as a terahertz source in the imaging applications.展开更多
In mausoleum murals, existing bubbles are one kind of the most harmful defects for the repair and protection of relics. For this reason, it is necessary to detect bubbles, especially the ones with small size. A method...In mausoleum murals, existing bubbles are one kind of the most harmful defects for the repair and protection of relics. For this reason, it is necessary to detect bubbles, especially the ones with small size. A method to detect the small bubbles with enhanced terahertz (THz) images is proposed. To simulate the bubbles in the mausoleum murals, circular grooves have been hidden in the plaster and then measured by the THz reflected time domain spectroscopy imaging system. To observe the small bubbles in murals, a comprehensive enhancement algorithm is adopted to process the obtained THz images. With the enhanced method, the circular grooves in the murals can be observed clearly, even for the circular groove with a diameter of 1.5 mm. The results indicate that the proposed comprehensive method can be used to detect the tiny defects of murals.展开更多
基金Supported by the Hundred Talents Program of Chinese Academy of Sciencesthe National Basic Research Program of China under Grant No 2014CB339803+2 种基金the Major National Development Project of Scientific Instrument and Equipment under Grant No2011YQ150021the National Natural Science Foundation of China under Grant Nos 61575214,61574155,61404149 and 61404150the Shanghai Municipal Commission of Science and Technology under Grant Nos 14530711300,15560722000 and 15ZR1447500
文摘Computed tomography has been proven to be useful for non-destructive inspection of structures and materials. We build a three-dimensional imaging system with the photonically generated incoherent noise source and the Schottky barrier diode detector in the terahertz frequency band (90–140GHz). Based on the computed tomography technique, the three-dimensional image of a ceramic sample is reconstructed successfully by stacking the slices at different heights. The imaging results not only indicate the ability of terahertz wave in the non-invasive sensing and non-destructive inspection applications, but also prove the effectiveness and superiority of the uni-traveling-carrier photodiode as a terahertz source in the imaging applications.
基金supported by the 973 Program of China under Grant No.2013CBA01702National Natural Science Foundation of China under Grant No.11474206,No.91233202,No.11374216,and No.11404224+3 种基金Program for New Century Excellent Talents in University under Grant No.NCET-12-0607Scientific Research Project of Beijing Education Commission under Grant No.KM201310028005Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20121108120009the Beijing Youth Top-Notch Talent Training Plan under Grant No.CIT&TCD201504080
文摘In mausoleum murals, existing bubbles are one kind of the most harmful defects for the repair and protection of relics. For this reason, it is necessary to detect bubbles, especially the ones with small size. A method to detect the small bubbles with enhanced terahertz (THz) images is proposed. To simulate the bubbles in the mausoleum murals, circular grooves have been hidden in the plaster and then measured by the THz reflected time domain spectroscopy imaging system. To observe the small bubbles in murals, a comprehensive enhancement algorithm is adopted to process the obtained THz images. With the enhanced method, the circular grooves in the murals can be observed clearly, even for the circular groove with a diameter of 1.5 mm. The results indicate that the proposed comprehensive method can be used to detect the tiny defects of murals.