We study iterative methods for solving a set of sparse non-negative tensor equations (multivariate polynomial systems) arising from data mining applications such as information retrieval by query search and communit...We study iterative methods for solving a set of sparse non-negative tensor equations (multivariate polynomial systems) arising from data mining applications such as information retrieval by query search and community discovery in multi-dimensional networks. By making use of sparse and non-negative tensor structure, we develop Jacobi and Gauss-Seidel methods for solving tensor equations. The multiplication of tensors with vectors are required at each iteration of these iterative methods, the cost per iteration depends on the number of non-zeros in the sparse tensors. We show linear convergence of the Jacobi and Gauss-Seidel methods under suitable conditions, and therefore, the set of sparse non-negative tensor equations can be solved very efficiently. Experimental results on information retrieval by query search and community discovery in multi-dimensional networks are presented to illustrate the application of tensor equations and the effectiveness of the proposed methods.展开更多
In this paper, we present an efficient approach for unsupervised segmentation of natural and textural images based on the extraction of image features and a fast active contour segmentation model. We address the probl...In this paper, we present an efficient approach for unsupervised segmentation of natural and textural images based on the extraction of image features and a fast active contour segmentation model. We address the problem of textures where neither the gray-level information nor the boundary information is adequate for object extraction. This is often the case of natural images composed of both homogeneous and textured regions. Because these images cannot be in general directly processed by the gray-level information, we propose a new texture descriptor which intrinsically defines the geometry of textures using semi-local image information and tools from differential geometry. Then, we use the popular Kullback-Leibler distance to design an active contour model which distinguishes the background and textures of interest. The existence of a minimizing solution to the proposed segmentation model is proven. Finally, a texture segmentation algorithm based on the Split-Bregrnan method is introduced to extract meaningful objects in a fast way. Promising synthetic and real-world results for gray-scale and color images are presented.展开更多
With the continuous development of full tensor gradiometer (FTG) measurement techniques, three-dimensional (3D) inversion of FTG data is becoming increasingly used in oil and gas exploration. In the fast processin...With the continuous development of full tensor gradiometer (FTG) measurement techniques, three-dimensional (3D) inversion of FTG data is becoming increasingly used in oil and gas exploration. In the fast processing and interpretation of large-scale high-precision data, the use of the graphics processing unit process unit (GPU) and preconditioning methods are very important in the data inversion. In this paper, an improved preconditioned conjugate gradient algorithm is proposed by combining the symmetric successive over-relaxation (SSOR) technique and the incomplete Choleksy decomposition conjugate gradient algorithm (ICCG). Since preparing the preconditioner requires extra time, a parallel implement based on GPU is proposed. The improved method is then applied in the inversion of noise- contaminated synthetic data to prove its adaptability in the inversion of 3D FTG data. Results show that the parallel SSOR-ICCG algorithm based on NVIDIA Tesla C2050 GPU achieves a speedup of approximately 25 times that of a serial program using a 2.0 GHz Central Processing Unit (CPU). Real airbome gravity-gradiometry data from Vinton salt dome (south- west Louisiana, USA) are also considered. Good results are obtained, which verifies the efficiency and feasibility of the proposed parallel method in fast inversion of 3D FTG data.展开更多
Tensor controlled-source audio-frequency magnetotellurics (CSAMT) can yield information about electric and magnetic fields owing to its multi-transmitter configuration compared with the common scalar CSAMT. The most...Tensor controlled-source audio-frequency magnetotellurics (CSAMT) can yield information about electric and magnetic fields owing to its multi-transmitter configuration compared with the common scalar CSAMT. The most current theories, numerical simulations, and inversion of tensor CSAMT are based on far-field measurements and the assumption that underground media have isotropic resistivity. We adopt a three-dimensional (3D) staggered-grid finite difference numerical simulation method to analyze the resistivity in axial anisotropic and isotropic media. We further adopt the limited-memory Broyden- Fletcher-Goldfarb-Shanno (LBFGS) method to perform 3D tensor CSAMT axial anisotropic inversion. The inversion results suggest that when the underground structure is anisotropic, the isotropic inversion will introduce errors to the interpretation.展开更多
In order to rapidly and accurately detect infrared small and dim targets in the infrared image of complex scene collected by virtual prototyping of space-based downward-looking multiband detection,an improved detectio...In order to rapidly and accurately detect infrared small and dim targets in the infrared image of complex scene collected by virtual prototyping of space-based downward-looking multiband detection,an improved detection algorithm of infrared small and dim target is proposed in this paper.Firstly,the original infrared images are changed into a new infrared patch tensor mode through data reconstruction.Then,the infrared small and dim target detection problems are converted to low-rank tensor recovery problems based on tensor nuclear norm in accordance with patch tensor characteristics,and inverse variance weighted entropy is defined for self-adaptive adjustment of sparseness.Finally,the low-rank tensor recovery problem with noise is solved by alternating the direction method to obtain the sparse target image,and the final small target is worked out by a simple partitioning algorithm.The test results in various spacebased downward-looking complex scenes show that such method can restrain complex background well by virtue of rapid arithmetic speed with high detection probability and low false alarm rate.It is a kind of infrared small and dim target detection method with good performance.展开更多
In this paper,we consider the tensor absolute value equations(TAVEs),which is a newly introduced problem in the context of multilinear systems.Although the system of the TAVEs is an interesting generalization of matri...In this paper,we consider the tensor absolute value equations(TAVEs),which is a newly introduced problem in the context of multilinear systems.Although the system of the TAVEs is an interesting generalization of matrix absolute value equations(AVEs),the well-developed theory and algorithms for the AVEs are not directly applicable to the TAVEs due to the nonlinearity(or multilinearity)of the problem under consideration.Therefore,we first study the solutions existence of some classes of the TAVEs with the help of degree theory,in addition to showing,by fixed point theory,that the system of the TAVEs has at least one solution under some checkable conditions.Then,we give a bound of solutions of the TAVEs for some special cases.To find a solution to the TAVEs,we employ the generalized Newton method and report some preliminary results.展开更多
The preconditioned iterative solvers for solving Sylvester tensor equations are considered in this paper.By fully exploiting the structure of the tensor equation,we propose a projection method based on the tensor form...The preconditioned iterative solvers for solving Sylvester tensor equations are considered in this paper.By fully exploiting the structure of the tensor equation,we propose a projection method based on the tensor format,which needs less flops and storage than the standard projection method.The structure of the coefficient matrices of the tensor equation is used to design the nearest Kronecker product(NKP) preconditioner,which is easy to construct and is able to accelerate the convergence of the iterative solver.Numerical experiments are presented to show good performance of the approaches.展开更多
文摘We study iterative methods for solving a set of sparse non-negative tensor equations (multivariate polynomial systems) arising from data mining applications such as information retrieval by query search and community discovery in multi-dimensional networks. By making use of sparse and non-negative tensor structure, we develop Jacobi and Gauss-Seidel methods for solving tensor equations. The multiplication of tensors with vectors are required at each iteration of these iterative methods, the cost per iteration depends on the number of non-zeros in the sparse tensors. We show linear convergence of the Jacobi and Gauss-Seidel methods under suitable conditions, and therefore, the set of sparse non-negative tensor equations can be solved very efficiently. Experimental results on information retrieval by query search and community discovery in multi-dimensional networks are presented to illustrate the application of tensor equations and the effectiveness of the proposed methods.
基金supported by Swiss National Science Foundation Grant #205320-101621supported by ONR N00014-03-1-0071
文摘In this paper, we present an efficient approach for unsupervised segmentation of natural and textural images based on the extraction of image features and a fast active contour segmentation model. We address the problem of textures where neither the gray-level information nor the boundary information is adequate for object extraction. This is often the case of natural images composed of both homogeneous and textured regions. Because these images cannot be in general directly processed by the gray-level information, we propose a new texture descriptor which intrinsically defines the geometry of textures using semi-local image information and tools from differential geometry. Then, we use the popular Kullback-Leibler distance to design an active contour model which distinguishes the background and textures of interest. The existence of a minimizing solution to the proposed segmentation model is proven. Finally, a texture segmentation algorithm based on the Split-Bregrnan method is introduced to extract meaningful objects in a fast way. Promising synthetic and real-world results for gray-scale and color images are presented.
基金the Sub-project of National Science and Technology Major Project of China(No.2016ZX05027-002-003)the National Natural Science Foundation of China(No.41404089)+1 种基金the State Key Program of National Natural Science of China(No.41430322)the National Basic Research Program of China(973 Program)(No.2015CB45300)
文摘With the continuous development of full tensor gradiometer (FTG) measurement techniques, three-dimensional (3D) inversion of FTG data is becoming increasingly used in oil and gas exploration. In the fast processing and interpretation of large-scale high-precision data, the use of the graphics processing unit process unit (GPU) and preconditioning methods are very important in the data inversion. In this paper, an improved preconditioned conjugate gradient algorithm is proposed by combining the symmetric successive over-relaxation (SSOR) technique and the incomplete Choleksy decomposition conjugate gradient algorithm (ICCG). Since preparing the preconditioner requires extra time, a parallel implement based on GPU is proposed. The improved method is then applied in the inversion of noise- contaminated synthetic data to prove its adaptability in the inversion of 3D FTG data. Results show that the parallel SSOR-ICCG algorithm based on NVIDIA Tesla C2050 GPU achieves a speedup of approximately 25 times that of a serial program using a 2.0 GHz Central Processing Unit (CPU). Real airbome gravity-gradiometry data from Vinton salt dome (south- west Louisiana, USA) are also considered. Good results are obtained, which verifies the efficiency and feasibility of the proposed parallel method in fast inversion of 3D FTG data.
基金sponsored by National Natural Science Foundation of China(No.41374078)
文摘Tensor controlled-source audio-frequency magnetotellurics (CSAMT) can yield information about electric and magnetic fields owing to its multi-transmitter configuration compared with the common scalar CSAMT. The most current theories, numerical simulations, and inversion of tensor CSAMT are based on far-field measurements and the assumption that underground media have isotropic resistivity. We adopt a three-dimensional (3D) staggered-grid finite difference numerical simulation method to analyze the resistivity in axial anisotropic and isotropic media. We further adopt the limited-memory Broyden- Fletcher-Goldfarb-Shanno (LBFGS) method to perform 3D tensor CSAMT axial anisotropic inversion. The inversion results suggest that when the underground structure is anisotropic, the isotropic inversion will introduce errors to the interpretation.
文摘In order to rapidly and accurately detect infrared small and dim targets in the infrared image of complex scene collected by virtual prototyping of space-based downward-looking multiband detection,an improved detection algorithm of infrared small and dim target is proposed in this paper.Firstly,the original infrared images are changed into a new infrared patch tensor mode through data reconstruction.Then,the infrared small and dim target detection problems are converted to low-rank tensor recovery problems based on tensor nuclear norm in accordance with patch tensor characteristics,and inverse variance weighted entropy is defined for self-adaptive adjustment of sparseness.Finally,the low-rank tensor recovery problem with noise is solved by alternating the direction method to obtain the sparse target image,and the final small target is worked out by a simple partitioning algorithm.The test results in various spacebased downward-looking complex scenes show that such method can restrain complex background well by virtue of rapid arithmetic speed with high detection probability and low false alarm rate.It is a kind of infrared small and dim target detection method with good performance.
基金supported by National Natural Science Foundation of China(Grant Nos.11571087 and 11771113)Natural Science Foundation of Zhejiang Province(Grant No.LY17A010028)supported by the Hong Kong Research Grant Council(Grant Nos.PolyU 15302114,15300715,15301716 and 15300717)。
文摘In this paper,we consider the tensor absolute value equations(TAVEs),which is a newly introduced problem in the context of multilinear systems.Although the system of the TAVEs is an interesting generalization of matrix absolute value equations(AVEs),the well-developed theory and algorithms for the AVEs are not directly applicable to the TAVEs due to the nonlinearity(or multilinearity)of the problem under consideration.Therefore,we first study the solutions existence of some classes of the TAVEs with the help of degree theory,in addition to showing,by fixed point theory,that the system of the TAVEs has at least one solution under some checkable conditions.Then,we give a bound of solutions of the TAVEs for some special cases.To find a solution to the TAVEs,we employ the generalized Newton method and report some preliminary results.
基金supported by National Natural Science Foundation of China (Grant No.10961010)Science and Technology Foundation of Guizhou Province (Grant No. LKS[2009]03)
文摘The preconditioned iterative solvers for solving Sylvester tensor equations are considered in this paper.By fully exploiting the structure of the tensor equation,we propose a projection method based on the tensor format,which needs less flops and storage than the standard projection method.The structure of the coefficient matrices of the tensor equation is used to design the nearest Kronecker product(NKP) preconditioner,which is easy to construct and is able to accelerate the convergence of the iterative solver.Numerical experiments are presented to show good performance of the approaches.