期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于图形重写和融合探索的张量虚拟机算符融合优化
1
作者 王娜 蒋林 +1 位作者 李远成 朱筠 《计算机应用》 CSCD 北大核心 2024年第9期2802-2809,共8页
针对计算密集型神经网络在使用张量虚拟机(TVM)算符融合过程中对计算图进行逐层查找导致访问次数过多、内存资源利用率低等问题,提出一种基于图形重写和融合探索的TVM算符融合优化方法。首先,对运算符的映射类型进行分析;其次,基于运算... 针对计算密集型神经网络在使用张量虚拟机(TVM)算符融合过程中对计算图进行逐层查找导致访问次数过多、内存资源利用率低等问题,提出一种基于图形重写和融合探索的TVM算符融合优化方法。首先,对运算符的映射类型进行分析;其次,基于运算定律对计算图进行重写,简化计算图结构以减少中间结果生成,降低内存资源消耗并提升融合效率;再次,采用融合探索算法寻找融合代价较小的算符优先进行融合,避免数据冗余和寄存器溢出;最后,在CPU上实现神经网络算符融合,并测试融合加速性能。实验结果表明,所提方法可有效减少计算图层数和算符个数,降低访存频率和数据传输量。与TVM算符融合方法相比,所提方法在融合过程中的计算图层数平均减少18%,推理速度平均提升23%,验证了该方法在优化计算图融合过程中的有效性。 展开更多
关键词 算符融合 图形重写 张量虚拟机 神经网络 融合探索
下载PDF
异构平台下卷积神经网络推理模型自适应划分和调度方法 被引量:2
2
作者 尚绍法 蒋林 +1 位作者 李远成 朱筠 《计算机应用》 CSCD 北大核心 2023年第9期2828-2835,共8页
针对卷积神经网络(CNN)在异构平台执行推理时存在硬件资源利用率低、延迟高等问题,提出一种CNN推理模型自适应划分和调度方法。首先,通过遍历计算图提取CNN的关键算子完成模型的自适应划分,增强调度策略灵活性;然后,基于性能实测与关键... 针对卷积神经网络(CNN)在异构平台执行推理时存在硬件资源利用率低、延迟高等问题,提出一种CNN推理模型自适应划分和调度方法。首先,通过遍历计算图提取CNN的关键算子完成模型的自适应划分,增强调度策略灵活性;然后,基于性能实测与关键路径-贪婪搜索算法,在CPU-GPU异构平台上根据子模型运行特征选取最优运行负载,提高子模型推理速度;最后利用张量虚拟机(TVM)中跨设备调度机制,配置子模型的依赖关系与运行负载,实现模型推理的自适应调度,降低设备间通信延迟。实验结果表明,与TVM算子优化方法在GPU和CPU上的推理速度相比,所提方法在模型推理准确度无损前提下,推理速度提升了5.88%~19.05%和45.45%~311.46%。 展开更多
关键词 张量虚拟机 卷积神经网络 模型划分 任务调度 特征分析
下载PDF
基于张量虚拟机的深度神经网络模型加速方法 被引量:1
3
作者 申云飞 申飞 +1 位作者 李芳 张俊 《计算机应用》 CSCD 北大核心 2023年第9期2836-2844,共9页
随着人工智能(AI)技术的蓬勃发展,深度神经网络(DNN)模型被大规模应用到各类移动端与边缘端。然而,边缘端算力低、内存容量小,且实现模型加速需要深入掌握边缘端硬件知识,这增加了模型的部署难度,也限制了模型的推广应用。因此,基于张... 随着人工智能(AI)技术的蓬勃发展,深度神经网络(DNN)模型被大规模应用到各类移动端与边缘端。然而,边缘端算力低、内存容量小,且实现模型加速需要深入掌握边缘端硬件知识,这增加了模型的部署难度,也限制了模型的推广应用。因此,基于张量虚拟机(TVM)提出一种DNN加速与部署方法,从而实现卷积神经网络(CNN)模型在现场可编程门阵列(FPGA)上的加速,并在分心驾驶分类应用场景下验证了所提方法的可行性。通过计算图优化方法减小了模型的访存和计算开销,通过模型量化方法减小了模型尺寸,通过计算图打包方法将卷积计算卸载到FPGA上执行以提高模型推理速度。与微处理器(MPU)相比,所提方法可使ResNet50和ResNet18在MPU+FPGA上的推理时间分别减少88.63%和77.53%;而在AUC(American University in Cairo)数据集上,相较于MPU,两个模型在MPU+FPGA上的top1推理精度仅下降了0.26和0.16个百分点。可见,所提方法可以降低不同模型在FPGA上的部署难度。 展开更多
关键词 张量虚拟机 深度神经网络 现场可编程门阵列 边缘设备 模型部署 模型加速
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部