时间序列是一种广泛存在于现实各领域之中的海量高维数据,时间序列预测是该领域的一个研究重点.传统的时间序列预测方法仅仅从时间的维度对时间序列进行分析,忽略了外界影响因素对时间序列可能产生的影响.针对传统时间序列预测方法存在...时间序列是一种广泛存在于现实各领域之中的海量高维数据,时间序列预测是该领域的一个研究重点.传统的时间序列预测方法仅仅从时间的维度对时间序列进行分析,忽略了外界影响因素对时间序列可能产生的影响.针对传统时间序列预测方法存在的问题,提出一种基于深度学习的时间序列预测模型DAFDCRNN (dual-stage attention and full dimension convolution based recurrent neural network).该模型引入目标注意力机制来学习输入特征与被预测特征之间的相关性,引入全维度卷积机制来学习输入特征之间的相关性,并引入时间注意力(temporal attention)机制来学习时间序列的长期时间依赖性.在实验部分首先确定模型的超参数,然后对模型部件的有效性进行验证,最后通过对比实验验证了所提出的DAFDC-RNN模型在大特征量数据集上具有最佳的预测效果.展开更多
现有视频压缩感知神经网络重构算法采用的光流对齐和可变形卷积对齐的运动补偿方式存在误差积聚、信息感知范围有限等问题,极大地限制了其有效性和实用性.为了在不引入额外参数的条件下自适应提取参考帧的全局信息,本文提出了利用注意...现有视频压缩感知神经网络重构算法采用的光流对齐和可变形卷积对齐的运动补偿方式存在误差积聚、信息感知范围有限等问题,极大地限制了其有效性和实用性.为了在不引入额外参数的条件下自适应提取参考帧的全局信息,本文提出了利用注意力机制实现视频压缩感知重构过程中运动估计/运动补偿的创新思想,并设计了时域注意力特征对齐网络(Temporal-Attention Feature Alignment Network,TAFA-Net)进行实现.在此基础上,提出了联合深度重构网络(Joint Deep Reconstruction Network Based on TAFA-Net,JDR-TAFA-Net),实现非关键帧的高性能重构.先利用本文所提的TAFA-Net获得参考帧到当前帧的对齐帧;然后,利用基于自编码器架构的融合网络充分提取已有帧信息,增强非关键帧的重构质量.仿真结果表明,与最优的迭代优化算法SSIM-InterF-GSR相比,所提算法重构帧的峰值信噪比(Peak Signal to Noise Ratio,PSNR)最高提升了4.74 dB;与最优的深度学习算法STM-Net相比,所提算法重构帧的PSNR最高提升了0.64 dB.展开更多
文摘时间序列是一种广泛存在于现实各领域之中的海量高维数据,时间序列预测是该领域的一个研究重点.传统的时间序列预测方法仅仅从时间的维度对时间序列进行分析,忽略了外界影响因素对时间序列可能产生的影响.针对传统时间序列预测方法存在的问题,提出一种基于深度学习的时间序列预测模型DAFDCRNN (dual-stage attention and full dimension convolution based recurrent neural network).该模型引入目标注意力机制来学习输入特征与被预测特征之间的相关性,引入全维度卷积机制来学习输入特征之间的相关性,并引入时间注意力(temporal attention)机制来学习时间序列的长期时间依赖性.在实验部分首先确定模型的超参数,然后对模型部件的有效性进行验证,最后通过对比实验验证了所提出的DAFDC-RNN模型在大特征量数据集上具有最佳的预测效果.
文摘现有视频压缩感知神经网络重构算法采用的光流对齐和可变形卷积对齐的运动补偿方式存在误差积聚、信息感知范围有限等问题,极大地限制了其有效性和实用性.为了在不引入额外参数的条件下自适应提取参考帧的全局信息,本文提出了利用注意力机制实现视频压缩感知重构过程中运动估计/运动补偿的创新思想,并设计了时域注意力特征对齐网络(Temporal-Attention Feature Alignment Network,TAFA-Net)进行实现.在此基础上,提出了联合深度重构网络(Joint Deep Reconstruction Network Based on TAFA-Net,JDR-TAFA-Net),实现非关键帧的高性能重构.先利用本文所提的TAFA-Net获得参考帧到当前帧的对齐帧;然后,利用基于自编码器架构的融合网络充分提取已有帧信息,增强非关键帧的重构质量.仿真结果表明,与最优的迭代优化算法SSIM-InterF-GSR相比,所提算法重构帧的峰值信噪比(Peak Signal to Noise Ratio,PSNR)最高提升了4.74 dB;与最优的深度学习算法STM-Net相比,所提算法重构帧的PSNR最高提升了0.64 dB.