期刊文献+
共找到262篇文章
< 1 2 14 >
每页显示 20 50 100
考虑实时气象耦合作用的地区电网短期负荷预测建模 被引量:45
1
作者 李滨 陆明珍 《电力系统自动化》 EI CSCD 北大核心 2020年第17期60-75,共16页
传统的短期负荷预测中并未考虑实时气象因素的耦合作用,针对此提出了考虑实时气象耦合作用的时域卷积网络短期负荷预测方法。首先,分析了各项实时综合气象指数与负荷曲线的相关性,进而构建了混合日特征量与实时气象因素的相似日选取方... 传统的短期负荷预测中并未考虑实时气象因素的耦合作用,针对此提出了考虑实时气象耦合作用的时域卷积网络短期负荷预测方法。首先,分析了各项实时综合气象指数与负荷曲线的相关性,进而构建了混合日特征量与实时气象因素的相似日选取方法。然后,引入各项实时综合气象指数作为模型输入。最后,采用能够充分考虑并包容实时气象因素与负荷"时差性"特点的时域卷积网络进行日前负荷预测建模。实验仿真以某地区电网实际负荷为例,研究表明该预测模型能够有效提升地区电网日前负荷预测精度。 展开更多
关键词 短期负荷预测 实时气象因素 相似日选取 时域卷积网络
下载PDF
基于改进LSTM-TCN模型的海上风电超短期功率预测 被引量:41
2
作者 符杨 任子旭 +3 位作者 魏书荣 王洋 黄玲玲 贾锋 《中国电机工程学报》 EI CSCD 北大核心 2022年第12期4292-4302,共11页
风功率精确预测是实现大规模海上风电友好并网的重要手段。大型海上风电场机组台数众多,状态各异。机组状态、尾流影响和时空特性对风功率预测的影响不可忽略。该文基于长短期神经网络(long short-term memory,LSTM)–时间卷积神经网络(... 风功率精确预测是实现大规模海上风电友好并网的重要手段。大型海上风电场机组台数众多,状态各异。机组状态、尾流影响和时空特性对风功率预测的影响不可忽略。该文基于长短期神经网络(long short-term memory,LSTM)–时间卷积神经网络(temporal convolutional network,TCN),提出了一种考虑机组状态、风机尾流和场群空间分布特性的海上风电超短期功率预测方法。首先分析了机组状态和尾流数据对于功率预测的影响,然后基于LSTM建立了风电机组运行数据深度学习预测模型,实现机组健康状态到运行数据的映射,并通过数据的实时滚动对机组健康状态进行持续修正;在此基础上,加入注意力强化和随机空间特性弱化模块的改进LSTM-TCN模型。通过实际运行数据算例分析,相比TCN算法、LSTM算法,该文方法可提升风功率预测的精度,尤其对于海上常见的风速骤变工况适应性较强,对TCN算法过于强化空间特性的问题进行改进。以该模型的精确预测为基础,可进一步用于大规模海上风电场内机组的协调优化控制,提升海上风电出力可靠性。 展开更多
关键词 海上风电 风功率预测 机组状态 时空特性 时间卷积神经网络
下载PDF
基于时间卷积神经网络的短时交通流预测算法 被引量:23
3
作者 袁华 陈泽濠 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第11期107-113,122,共8页
短时交通流预测是智能交通系统实现交通控制与交通诱导的关键所在。传统一维卷积神经网络(CNN)在短时交通流预测上难以获取长时记忆,同时存在信息泄露的问题。文中提出扩张-因果卷积神经网络(DCFCN),引入扩张卷积来增加感受野大小,获取... 短时交通流预测是智能交通系统实现交通控制与交通诱导的关键所在。传统一维卷积神经网络(CNN)在短时交通流预测上难以获取长时记忆,同时存在信息泄露的问题。文中提出扩张-因果卷积神经网络(DCFCN),引入扩张卷积来增加感受野大小,获取序列的长时记忆;同时,引入因果卷积来解决信息泄露问题。DCFCN由6层卷积层堆叠而成,每层通过Padding的方式实现因果卷积,扩张系数逐层呈指数增长。实验结果表明,文中提出的DCFCN在短时交通流预测上优于其他对比模型,且在GPU上计算效率明显提升。 展开更多
关键词 短时交通流预测 时间卷积网络 深度学习
下载PDF
基于三次指数平滑法和时间卷积网络的云资源预测模型 被引量:23
4
作者 谢晓兰 张征征 +1 位作者 王建伟 程晓春 《通信学报》 EI CSCD 北大核心 2019年第8期143-150,共8页
以Docker和Kubernetes为代表的容器云具有额外的资源开销更小、启动销毁时间更短等优点,但它仍然存在过度供应和供应不足等资源管理问题。为了使Kubernetes集群对部署在其上的应用资源使用量能“提前”响应,并根据预测值为应用及时、准... 以Docker和Kubernetes为代表的容器云具有额外的资源开销更小、启动销毁时间更短等优点,但它仍然存在过度供应和供应不足等资源管理问题。为了使Kubernetes集群对部署在其上的应用资源使用量能“提前”响应,并根据预测值为应用及时、准确、动态地调度和分配资源,提出了一种基于三次指数平滑法和时间卷积网络的云资源预测模型,根据历史数据预测未来的资源需求。为了找到参数的最优组合,使用TPOT调参思想对参数进行优化。对Google数据集CPU和内存的预测实验表明,所提模型与其他模型相比具有更好的预测性能。 展开更多
关键词 资源预测 Kubernetes 指数平滑法 时间卷积网络
下载PDF
基于极端梯度提升和时间卷积网络的短期电力负荷预测 被引量:19
5
作者 唐贤伦 陈洪旭 +3 位作者 熊德意 张艺琼 蒋维弛 邹密 《高电压技术》 EI CAS CSCD 北大核心 2022年第8期3059-3067,共9页
电力负荷预测是实现电力系统智能化的基础。准确的负荷预测可以保证电力系统安全稳定地运行。针对短期负荷波动大,随机性强的特点,提出一种基于极端梯度提升和时间卷积网络的短期电力负荷预测方法。首先,利用变分模态分解(variational m... 电力负荷预测是实现电力系统智能化的基础。准确的负荷预测可以保证电力系统安全稳定地运行。针对短期负荷波动大,随机性强的特点,提出一种基于极端梯度提升和时间卷积网络的短期电力负荷预测方法。首先,利用变分模态分解(variational mode decomposition,VMD)对负荷序列进行平稳化预处理,将原始负荷拆分成若干个模态分量负荷。同时,为了减少预测模型训练所需的时间,利用样本熵来评估各分量的复杂度,将复杂性相近的负荷分量归为一类用于训练同一模型。最后,结合极端梯度提升和时间卷积网络的优点,利用极端梯度提升模型来预测趋势负荷,时间卷积网络模型来预测随机扰动负荷,并在模型训练过程中,利用树状Parzen估计来调节模型的超参数,得到最优的预测模型。为验证本文所提方法的有效性,在EUNITE竞赛数据集上进行了仿真实验,分别预测未来24 h的短期负荷和每日峰值负荷。实验结果表明,相比于支持向量回归(support vector regression,SVR),长短时记忆(longshort-term memory,LSTM),门控循环单元(gated recurrent unit,GRU),经验模态分解(empirical mode decomposition,EMD)+LSTM等短期负荷预测模型,该方法能取得更好的预测效果,具有更高的预测精度。 展开更多
关键词 负荷预测 变分模态分解 时间卷积网络 极端梯度提升 树状Parzen估计
下载PDF
基于图WaveNet的电动汽车充电负荷预测 被引量:18
6
作者 胡博 张鹏飞 +3 位作者 黄恩泽 刘璟璐 徐健 邢作霞 《电力系统自动化》 EI CSCD 北大核心 2022年第16期207-213,共7页
为了更好地挖掘电网-交通网强耦合态势下电动汽车充电负荷的时空动态特征,提高充电负荷预测精度,提出了一种基于图WaveNet的电动汽车充电负荷预测框架。首先,将耦合的电网-交通网中的充电站看作充电负荷节点;然后,把充电站的充电负荷数... 为了更好地挖掘电网-交通网强耦合态势下电动汽车充电负荷的时空动态特征,提高充电负荷预测精度,提出了一种基于图WaveNet的电动汽车充电负荷预测框架。首先,将耦合的电网-交通网中的充电站看作充电负荷节点;然后,把充电站的充电负荷数据作为节点的特征信息,将各个节点构造成一张图,并把蕴含充电负荷空间维信息的图和充电负荷的时间维信息输入自适应图WaveNet框架中进行预测;最后,以中国某市城区内的充电站负荷数据为例,将基于自适应图WaveNet框架的预测结果与现有方法的预测结果进行对比,验证了所提方法的正确性和有效性。 展开更多
关键词 电动汽车 充电负荷预测 图神经网络 图WaveNet 时间卷积网络 时空特征挖掘
下载PDF
基于时序生成对抗网络的月度风光发电功率场景分析方法 被引量:17
7
作者 李辉 任洲洋 +2 位作者 胡博 王强钢 李文沅 《中国电机工程学报》 EI CSCD 北大核心 2022年第2期537-547,共11页
针对月度风光发电功率模拟面临的变量维度高、时空特征复杂等难题,提出一种基于时序生成对抗网络的月度风光发电功率场景分析方法。采用基于RV系数的聚类技术提取代表性日发电状态,基于Markov链刻画风光日发电状态转移规律;引入缩放点... 针对月度风光发电功率模拟面临的变量维度高、时空特征复杂等难题,提出一种基于时序生成对抗网络的月度风光发电功率场景分析方法。采用基于RV系数的聚类技术提取代表性日发电状态,基于Markov链刻画风光日发电状态转移规律;引入缩放点积注意力机制与时序卷积网络,构建时序生成对抗网络,模拟日内风光发电功率的时序性及空间相关性;提出月度风光发电功率场景的随机生成方法。考虑电网中长期分析需求,建立月度风光发电功率场景的优化削减方法。最后,采用我国东北地区6座风电场和6座光伏电站的历史发电功率数据,验证所提方法的有效性和正确性。 展开更多
关键词 月度风光发电功率 场景生成 场景削减 注意力机制 时序卷积网络 生成对抗网络
下载PDF
基于聚合混合模态分解和时序卷积神经网络的综合能源系统负荷修正预测 被引量:17
8
作者 李文武 张鹏宇 +2 位作者 石强 冯晨洋 李丹 《电网技术》 EI CSCD 北大核心 2022年第9期3345-3353,共9页
为增强综合能源系统负荷精细化分解水平,充分利用误差信息以进一步提升预测性能,提出一种基于聚合混合模态分解和时序卷积神经网络(temporal convolutional network,TCN)的综合能源系统负荷修正预测框架。首先,采用改进完全集合经验模... 为增强综合能源系统负荷精细化分解水平,充分利用误差信息以进一步提升预测性能,提出一种基于聚合混合模态分解和时序卷积神经网络(temporal convolutional network,TCN)的综合能源系统负荷修正预测框架。首先,采用改进完全集合经验模态分解对电、冷和热负荷初步分解处理,随后利用变分模态分解对具有强复杂性的子序列进一步分解。然后,依据最大信息系数(maximum information coefficient,MIC)分析多元负荷的耦合特性并通过多元相空间重构(multivariate phase space reconstruction,MPSR)丰富特征信息。最后,构建基于TCN的修正预测模型。以校园综合能源系统算例对比不同预测模型,结果显示所提修正预测框架的电、冷和热负荷预测均具有较低的平均绝对百分比误差,有效解决了预测中模态分解的模态混叠以及模态高频分量问题,实现预测误差修正。 展开更多
关键词 综合能源系统负荷预测 混合模态分解 最大信息系数 时序卷积神经网络 误差修正
下载PDF
基于注意力TCN的滚动轴承剩余使用寿命预测方法 被引量:14
9
作者 陈保家 陈正坤 +1 位作者 陈学良 郭凯敏 《电子测量技术》 北大核心 2021年第24期153-160,共8页
针对现有的基于数据驱动的滚动轴承剩余使用寿命(RUL)预测方法仍需要大量的先验知识来提取特征、构建健康指标和设定故障阈值的现状,提出了一种基于带多头注意力机制的时间卷积网络(TCN)的RUL直接预测方法。该方法首先将原始振动信号的... 针对现有的基于数据驱动的滚动轴承剩余使用寿命(RUL)预测方法仍需要大量的先验知识来提取特征、构建健康指标和设定故障阈值的现状,提出了一种基于带多头注意力机制的时间卷积网络(TCN)的RUL直接预测方法。该方法首先将原始振动信号的短时傅里叶变换(STFT)作为堆栈降噪自动编码器(SDAE)的输入,得到深度特征表示;然后将其输入到注意力TCN中进行RUL预测。最后,在PRONOSTIA的滚动轴承数据集进行验证。结果表明,该方法的预测误差指标MAE和MAPE分别比其他4种方法平均降低了53.92%和46.13%;得分指标也比这些方法平均提高了52.98%。 展开更多
关键词 轴承 剩余使用寿命预测 时间卷积网络 多头注意力
下载PDF
基于相似日匹配及TCN-Attention的短期光伏出力预测 被引量:13
10
作者 陈禹帆 温蜜 +1 位作者 张凯 余珊 《电测与仪表》 北大核心 2022年第10期108-116,共9页
短期光伏出力预测对电力系统生产调度计划的合理制定极其重要,有助于促进光伏发电并网和消纳。光伏出力受气象特征影响较大,其过程具有波动性、间歇性、不可控等特点,导致快速、精准地进行短期光伏出力预测成为一项挑战。对此,文章提出... 短期光伏出力预测对电力系统生产调度计划的合理制定极其重要,有助于促进光伏发电并网和消纳。光伏出力受气象特征影响较大,其过程具有波动性、间歇性、不可控等特点,导致快速、精准地进行短期光伏出力预测成为一项挑战。对此,文章提出一种基于相似日匹配及TCN-Attention的组合预测模型。文章采用时间序列形态聚类算法和最大信息系数对光伏出力的相似性进行刻画,避免全部历史数据作为输入所产生的数据冗余,利用可并行计算的时序卷积网络学习光伏出力特征,引入Attention机制突出关键气象特征的影响,有效提高模型训练速度和预测精度。基于实际数据的实验结果表明,较之其他预测方法,文章提出的方法具有信息提取直接、训练速度快、预测精度高等优点。 展开更多
关键词 短期光伏出力预测 时序卷积网络 Attention机制 形态聚类 最大信息系数
下载PDF
考虑时序特征提取与双重注意力融合的TCN超短期负荷预测 被引量:7
11
作者 周思思 李勇 +3 位作者 郭钇秀 乔学博 梅玉杰 邓威 《电力系统自动化》 EI CSCD 北大核心 2023年第18期193-205,共13页
为提高配电网超短期负荷预测精度,从特征构建与模型优化两个角度出发,提出一种基于Prophet和双重多头自注意力-时间卷积网络的超短期负荷预测框架。首先,通过Prophet提取负荷序列中隐含的多时间尺度时序特征。然后,基于最大信息系数选... 为提高配电网超短期负荷预测精度,从特征构建与模型优化两个角度出发,提出一种基于Prophet和双重多头自注意力-时间卷积网络的超短期负荷预测框架。首先,通过Prophet提取负荷序列中隐含的多时间尺度时序特征。然后,基于最大信息系数选择预测模型的输入特征,并采用最佳滑动窗口构建输入矩阵。最后,在时间卷积网络的基础上,引入特征和时序双重多头自注意力,用于挖掘负荷特征矩阵中不同输入特征、不同时间步之间的内部相关性,并为特征、时间步自适应赋权以突出重要信息的影响。基于湖南省某配电网台区负荷数据开展算例分析,消融实验结果表明所构建预测模型的有效性;与多种传统机器学习和深度学习预测模型的对比测试结果表明,所提方法具有更高的负荷预测精度。 展开更多
关键词 配电网 负荷预测 特征提取 多头自注意力 时间卷积网络 配电变压器台区
下载PDF
软阈值时序卷积网络在冷水机组传感器故障诊断中的应用 被引量:7
12
作者 洪琳 李冬辉 +1 位作者 高龙 赵墨刊 《西安交通大学学报》 EI CAS CSCD 北大核心 2023年第2期67-77,共11页
为了提高冷水机组传感器的故障诊断性能,提出了一种基于软阈值时序卷积网络的编码-解码器重构模型(ST-TCN),并建立基于该模型的传感器故障诊断方法。采用时序卷积网络(TCN)充分挖掘冷水机组传感器的时间相关性、热力学物理量间的数据相... 为了提高冷水机组传感器的故障诊断性能,提出了一种基于软阈值时序卷积网络的编码-解码器重构模型(ST-TCN),并建立基于该模型的传感器故障诊断方法。采用时序卷积网络(TCN)充分挖掘冷水机组传感器的时间相关性、热力学物理量间的数据相关性以及动态响应差异性特征。在TCN的残差块中引入软阈值自适应模块剔除冗余信息,降低噪声干扰。依托ST-TCN模型“端到端”的网络结构优势,将绝对重构残差向量与故障阈值向量进行比较,直接定位故障传感器。在实际压缩式冷水机组平台上采集传感器数据进行实验,结果表明,软阈值自适应模块能有效地增强网络模型的重构能力,从而提高故障传感器的诊断性能。以压缩机吸气温度传感器T1为例,ST-TCN的平均偏差故障识别率比改进前提升了45.9%;与其他故障诊断方法相比,所提的最新框架获得了较高的偏差故障识别率。 展开更多
关键词 时序卷积网络 编码-解码器 软阈值化 冷水机组 传感器故障诊断
下载PDF
基于多负荷特征和TCN-GRU神经网络的负荷预测 被引量:10
13
作者 郑豪丰 杨国华 +4 位作者 康文军 刘志远 刘世涛 伍弘 张鸿皓 《中国电力》 CSCD 北大核心 2022年第11期142-148,共7页
传统负荷预测未深入考虑负荷序列对模型预测精度的影响。为提高预测精度,提出了多负荷特征组合(multi-load feature combination, MLFC),并结合时间卷积网络(temporal convolution network,TCN)和门控循环单元(gated recurrent unit,GRU... 传统负荷预测未深入考虑负荷序列对模型预测精度的影响。为提高预测精度,提出了多负荷特征组合(multi-load feature combination, MLFC),并结合时间卷积网络(temporal convolution network,TCN)和门控循环单元(gated recurrent unit,GRU)构建了负荷预测框架。首先,引入负荷变化率特征和基于集合经验模态分解的负荷分量特征,并与负荷、日期特征构成MLFC;其次,选取TCN和GRU进行特征提取和预测,基于MLFC搭建MLFC-TCN-GRU预测框架;最后,采用不同模型验证所提方法。结果表明:MLFC有助于预测精度提升,且适用于不同模型。同时,MLFC-TCN-GRU相较于其他模型有着较高预测精度。 展开更多
关键词 负荷预测 集合经验模态分解 时间卷积网络 门控循环单元
下载PDF
基于多模型融合的内河船舶航行轨迹预测方法 被引量:9
14
作者 张阳 高曙 +1 位作者 何伟 蔡菁 《中国机械工程》 EI CAS CSCD 北大核心 2022年第10期1142-1152,共11页
内河航运是现代综合运输体系的重要组成部分,实时和高精度的船舶轨迹预测方法能够有效规避水上交通事故、增强船舶自动化与智能化监管能力。针对现有内河船舶轨迹预测方法精度不高的问题,以提高船舶轨迹短期预测精度为目标,综合使用待... 内河航运是现代综合运输体系的重要组成部分,实时和高精度的船舶轨迹预测方法能够有效规避水上交通事故、增强船舶自动化与智能化监管能力。针对现有内河船舶轨迹预测方法精度不高的问题,以提高船舶轨迹短期预测精度为目标,综合使用待测船舶近期船舶自动识别系统(AIS)数据和历史AIS数据,基于轨迹与航速和航向间的内在联系以及内河航道特点,构建了面向航速和航向预测的时域卷积网络模型、船舶轨迹动力学方程模型、自适应双隐层径向基函数网络等模型,提出了基于多模型融合的船舶轨迹预测方法。实验结果表明,所提方法轨迹预测精度有明显提高,并能满足实时性要求。 展开更多
关键词 时域卷积网络 径向基函数网络 多模型融合 内河船舶 轨迹预测
下载PDF
基于信号分解和深度学习的农产品价格预测 被引量:9
15
作者 王润周 张新生 王明虎 《农业工程学报》 EI CAS CSCD 北大核心 2022年第24期256-267,共12页
农产品价格的稳定对社会经济与农业发展有重要意义,但农产品价格的波动具有非平稳、非线性、波动性大的特性,较难精确预测。该研究基于信号分解和深度学习,提出一种分解-重构-提取-关联-输出的农产品价格预测模型(CT-BiSeq2seq),并且加... 农产品价格的稳定对社会经济与农业发展有重要意义,但农产品价格的波动具有非平稳、非线性、波动性大的特性,较难精确预测。该研究基于信号分解和深度学习,提出一种分解-重构-提取-关联-输出的农产品价格预测模型(CT-BiSeq2seq),并且加入平均气温、养殖成本(大猪配合饲料与尿素价格)、群众关注度等多维度数据来提高模型的预测精度。首先,采用互补集合经验模态分解(Complementary Ensemble Empirical Mode Decomposition,CEEMD)方法把复杂的原始价格序列分解为简单序列。其次,分析皮尔逊相关系数及分解后的子序列,把原始价格序列重构为高频项、低频项、残差项。再经过时间卷积网络(Temporal Convolutional Network,TCN)提取重构序列的数据特征。随后,构建Biseq2seq模型,解码器引入双向长短期记忆网络(Bi-directional Long Short-Term Memory,Bi-LSTM)加强序列数据间的全局关联。最后,通过解码器的LSTM网络输出预测值。以北京丰台区批发市场的白条猪肉价格进行实证分析,该研究提出的CT-BiSeq2seq模型的预测性能显著优于其他价格预测基准模型,在滞后天数为11 d达到最优效果。在其他数据集也有精确和稳定的预测效果,菠菜、苹果,鸡蛋的均方误差分别为0.6277、0.4632、0.5526元^(2)/kg^(2),平均绝对误差分别为0.5431、0.4425、0.5339元/kg,平均绝对百分比误差分别为3.2047%、2.2361%、2.2314%。同时根据不同数据集的结果发现,价格波动大的农产品适合采用较大的滞后天数,价格波动小的农产品适合采用较小的滞后天数。该模型可以为预测农产品的价格波动提供参考。 展开更多
关键词 农产品 价格预测 互补集合经验模态分解 时间卷积网络 双向序列到序列模型 长短期记忆网络
下载PDF
面向人体动作识别的局部特征融合时间卷积网络 被引量:10
16
作者 宋震 周元峰 +2 位作者 贾金公 辛士庆 刘毅 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2020年第3期418-424,共7页
针对3D人体骨架序列动作识别这一问题,提出了一种结合了局部特征融合的时间卷积网络方法.首先,对一个动作中整个骨架序列的所有关节点的空间位置变化进行建模,提取其骨架序列的全局空间特征;然后,根据人体关节点及连接关系的拓扑结构将... 针对3D人体骨架序列动作识别这一问题,提出了一种结合了局部特征融合的时间卷积网络方法.首先,对一个动作中整个骨架序列的所有关节点的空间位置变化进行建模,提取其骨架序列的全局空间特征;然后,根据人体关节点及连接关系的拓扑结构将全局空间特征划分为人体局部空间特征,并将得到的局部空间特征分别作为对应TCN的输入,进而学习各关节内部的特征关系;最后,对输出的各部分特征向量进行融合,学习各部分关节之间的协作关系,从而完成对动作的识别.运用该方法在当前最具挑战性的数据集NTU-RGB+D进行了分类识别实验,结果表明,与已有的基于CNN,LSTM以及TCN的方法相比,其在对象交叉(cross-subject)和视图交叉(cross-view)的分类准确率上分别提高到了79.5%和84.6%. 展开更多
关键词 动作识别 时间卷积网络 3D人体骨架
下载PDF
基于特征选择和时间卷积网络的工业控制系统入侵检测 被引量:9
17
作者 石乐义 侯会文 +2 位作者 徐兴华 许翰林 陈鸿龙 《工程科学与技术》 EI CSCD 北大核心 2022年第6期238-247,共10页
针对工业控制系统流量数据存在特征冗余及深度学习模型对较小规模数据集检测能力较差的问题,提出了一种基于特征选择和时间卷积网络的工业控制系统入侵检测模型。首先,对源域数据集的异常特征和样本不平衡数据进行处理,提高源域数据集... 针对工业控制系统流量数据存在特征冗余及深度学习模型对较小规模数据集检测能力较差的问题,提出了一种基于特征选择和时间卷积网络的工业控制系统入侵检测模型。首先,对源域数据集的异常特征和样本不平衡数据进行处理,提高源域数据集质量。其次,针对流量数据的特征冗余,利用信息增益率和主成分分析法构建IGR–PCA特征选择算法,筛选出最优特征子集实现数据降维。然后,根据工业控制系统流量数据的时间序列特性,在较大规模的源域数据集上,利用时间卷积网络(temporal convolution network,TCN)对时间序列数据优异的处理能力,构建源域时间卷积网络预训练模型。最后,在较小规模的目标域数据集上,结合迁移学习(transfer learning,TL)微调策略,获取源域样本数据的流量特征,构建目标域TCN–TL模型。利用公开的工业控制系统数据集进行实验测试,实验结果表明:流量数据经本文特征算法处理后,相较于其他方法,在降低数据维度减少计算量的同时仍具有良好的检测效果;在较大规模的源域数据集和较小规模的目标域数据集上,本文模型均取得了良好的检测效果;在目标域中利用迁移学习微调策略能够学习到源域中的知识,模型检测准确率为99.06%;在训练时间对比中,本文模型训练时间消耗更少,具有更好的泛化能力,能够更好地保护工业控制系统安全。 展开更多
关键词 工业控制系统 入侵检测 特征选择 时间卷积网络 迁移学习
下载PDF
基于GWO-TCN网络的HVDC输电线路故障诊断 被引量:10
18
作者 刘辉 李永康 +1 位作者 张淼 刘维 《电子测量技术》 北大核心 2021年第22期168-174,共7页
现有高压直流(HVDC)故障检测方法灵敏度低,难以识别高阻接地故障,提出了一种基于改进灰狼算法(GWO)优化时间卷积神经网络(TCN)的HVDC传输系统故障检测方法,整流侧检测装置采集的故障电流信号直接用作TCN的输入数据,克服了故障信号处理... 现有高压直流(HVDC)故障检测方法灵敏度低,难以识别高阻接地故障,提出了一种基于改进灰狼算法(GWO)优化时间卷积神经网络(TCN)的HVDC传输系统故障检测方法,整流侧检测装置采集的故障电流信号直接用作TCN的输入数据,克服了故障信号处理的繁琐过程。利用Simulink仿真软件建立±500 kV高压直流输电线路模型,对不同故障区域和故障类型进行仿真实验,使用基于LSTM模型,BiLSTM模型和CNN模型3种模型的故障检测方法进行比较。测试结果表明,GWO-TCN网络能够可靠、准确地在过渡电阻高达800Ω时进行HVDC输电线路故障选极和选区。 展开更多
关键词 时间卷积神经网络 灰狼优化算法 故障识别 高压直流输电
下载PDF
基于DAE和TCN的复杂工业过程故障预测 被引量:10
19
作者 高学金 马东阳 +1 位作者 韩华云 高慧慧 《仪器仪表学报》 CSCD 北大核心 2021年第6期140-151,共12页
为实时监测复杂工业过程的故障状态,精确预测故障趋势,提出基于降噪自编码和时间卷积网络的故障预测方法。首先,利用随机森林算法筛选故障相关特征。之后,利用堆栈降噪自编码网络提取非线性特征以及特征重构,并根据重构误差构造平方预... 为实时监测复杂工业过程的故障状态,精确预测故障趋势,提出基于降噪自编码和时间卷积网络的故障预测方法。首先,利用随机森林算法筛选故障相关特征。之后,利用堆栈降噪自编码网络提取非线性特征以及特征重构,并根据重构误差构造平方预测误差(SPE)统计量作为故障状态特征。最后,针对时间卷积网络残差模块中的ReLU激活函数在负区间内导数为零导致部分神经元无法被激活的问题,设计基于自门控激活函数(Swish)和滤波器响应(FRN)规范化的时间卷积网络(SFTCN)。将得到的SPE组成时间序列,利用SFTCN的预测模型实现其状态趋势预测。通过在TE仿真平台数据和美国密歇根大学智能维修中心实测的轴承全生命数据上的实验表明,与未改进的时间卷积网络对比,所提方法的预测平均绝对百分比误差至少降低20.9%,具有较高的应用价值。 展开更多
关键词 故障预测 随机森林算法 降噪自动编码 时间卷积网络 复杂工业过程
下载PDF
基于GCN和TCN的多因素城市路网出租车需求预测 被引量:5
20
作者 陈柘 刘嘉华 +2 位作者 赵斌 袁绍欣 康军 《控制与决策》 EI CSCD 北大核心 2023年第4期1031-1038,共8页
在巡游模式下,出租车与乘客间供需不易匹配,造成出租车空载和乘客打车难现象并存,准确高效地实现路网出租车需求预测有利于有效缓解这一问题.针对现有交通流预测模型对空间特征提取不充分,特别是对城市路网内路段之间的空间关系没有全... 在巡游模式下,出租车与乘客间供需不易匹配,造成出租车空载和乘客打车难现象并存,准确高效地实现路网出租车需求预测有利于有效缓解这一问题.针对现有交通流预测模型对空间特征提取不充分,特别是对城市路网内路段之间的空间关系没有全面挖掘这一问题,充分考虑路网内路段间的3种空间关系,对其分别构建路段间的局部关系图、路段全局关系图和路段OD次数关系图,提出一种由图卷积网络与时间卷积网络相结合的出租车需求预测模型.其中,采用图卷积网络对城市路网内路段的空间关系特征进行挖掘,采用时间卷积网络对交通数据集中的时间序列特征进行挖掘,并且考虑外部因素的影响.实验中,首先从真实出租车GPS轨迹数据中提取城市路网中各个路段的出租车出行量,并利用道路上在多个时隙形成的出行量序列对预测模型进行验证.结果表明,相比其他交通流预测模型,所提出的预测模型具有较优的平均绝对误差、均方根误差和平均绝对百分误差. 展开更多
关键词 出租车需求预测 深度学习 图卷积神经网络 时间卷积神经网络 GPS轨迹数据
原文传递
上一页 1 2 14 下一页 到第
使用帮助 返回顶部