期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
基于TCN的滚动轴承振动趋势与剩余寿命预测研究 被引量:16
1
作者 李亚平 李素杰 +1 位作者 马波 郭俊霞 《现代制造工程》 CSCD 北大核心 2021年第9期124-131,共8页
滚动轴承作为旋转机械的关键零件,在旋转机械的运行维护中是关注重点。对滚动轴承振动趋势和剩余寿命进行预测,可以有效地预防设备故障,减小故障造成的损失。近年来,随着机器学习和深度学习方法在计算机视觉、自然语言处理等领域的应用... 滚动轴承作为旋转机械的关键零件,在旋转机械的运行维护中是关注重点。对滚动轴承振动趋势和剩余寿命进行预测,可以有效地预防设备故障,减小故障造成的损失。近年来,随着机器学习和深度学习方法在计算机视觉、自然语言处理等领域的应用,越来越多的机器学习和深度学习方法被应用在滚动轴承的剩余寿命预测研究中。滚动轴承的振动数据,作为一种序列数据,可以有效地应用LSTM循环神经网络、RNN和CNN等深度学习方法进行预测,但是预测效果还有待进一步的提升。时间卷积网络(Temporal Convolution Network,TCN)作为一种最新出现的序列神经网络,被证明在序列数据预测上有良好的效果。采用TCN实现对滚动轴承的振动趋势预测,并且将TCN结合注意力机制进行了滚动轴承的剩余寿命预测研究;最终证实了TCN可以用于滚动轴承的振动趋势预测和剩余寿命预测,并得到了更好的预测效果。 展开更多
关键词 滚动轴承 趋势预测 寿命预测 深度学习 时间卷积网络
下载PDF
基于TCN-BiLSTM的网络安全态势预测 被引量:6
2
作者 孙隽丰 李成海 曹波 《系统工程与电子技术》 EI CSCD 北大核心 2023年第11期3671-3679,共9页
针对现有网络安全态势预测模型预测精确度低和收敛速度慢的问题,提出一种基于时域卷积网络(temporal convolution network,TCN)和双向长短期记忆(bi-directional long short-term memory,BiLSTM)网络的预测方法。首先,将TCN处理时间序... 针对现有网络安全态势预测模型预测精确度低和收敛速度慢的问题,提出一种基于时域卷积网络(temporal convolution network,TCN)和双向长短期记忆(bi-directional long short-term memory,BiLSTM)网络的预测方法。首先,将TCN处理时间序列问题的优势应用到态势预测上学习态势值的序列特征;随后,引入注意力机制动态调整属性的权值;然后,利用BiLSTM模型学习态势值的前后状况,以提取序列中更多的信息进行预测;利用粒子群优化(particle swarm optimization,PSO)算法进行超参数寻优,提升预测能力。实验结果表明,所提预测方法的拟合度可达0.9995,其拟合效果和收敛速度均优于其他模型。 展开更多
关键词 网络安全 态势预测 时域卷积网络 双向长短期记忆网络 粒子群优化 注意力机制
下载PDF
基于卷积自编码器和时间卷积网络的轴承性能退化趋势预测 被引量:2
3
作者 刘渊博 陈相 刘妤 《振动与冲击》 EI CSCD 北大核心 2023年第13期214-225,共12页
针对现有的退化预测研究在构建健康指标时面临信息损失,在建立预测模型时并行计算性能差、感受野不大等不足,结合监测对象性能退化的时序特性,提出基于卷积自编码器(convolutional auto-encoder,CAE)和时间卷积网络(temporal convolutio... 针对现有的退化预测研究在构建健康指标时面临信息损失,在建立预测模型时并行计算性能差、感受野不大等不足,结合监测对象性能退化的时序特性,提出基于卷积自编码器(convolutional auto-encoder,CAE)和时间卷积网络(temporal convolutional network,TCN)的性能退化趋势预测方法。构建振动信号多域高维特征集,并采用综合评价指标初步筛选敏感性好、趋势性强的性能退化指标;采用核主成分分析(kernel principal component analysis,KPCA)方法消除多域特征之间的冗余信息,并实现基于CAE网络的健康指标构建;在此基础上,构建基于TCN的性能退化预测模型,采用直接多步预测实现退化趋势预测,并利用轴承公用数据集验证方法的有效性。结果表明:采用KPCA可以将特征集从14维降至4维,且保留了原优选特征集97.63%的信息;基于CAE网络构建健康指标的方法是有效的,所构建的健康指标随时间的变化历程能真实反映轴承性能的退化过程,且该方法相较于自编码网络(auto-encoding,AE)和高斯混合模型(Gaussian mixure model,GMM)两种常用的健康指标构建方法具有明显优势;基于TCN算法构建的模型能准确预测轴承的性能退化,该模型相较于基于长短时记忆(long short-term memory,LSTM)网络和基于门控循环单元(gated recurrent unit,GRU)等构建的预测模型性能更好,预测精度更高,预测步长为3时的均方根误差和平均绝对误差分别为0.0257和0.0187;该方法具有普遍意义,可推广应用于其它机械装备/零部件的性能退化趋势预测。 展开更多
关键词 退化预测 特征提取 核主成分分析 健康指标 时间卷积网络(tcn) 卷积自编码器(CAE)
下载PDF
基于BiLSTM-SA-TCN时间序列模型在股票预测中的应用 被引量:3
4
作者 杨智勇 叶玉玺 周瑜 《南京信息工程大学学报(自然科学版)》 CAS 北大核心 2023年第6期643-651,共9页
针对股票预测模型存在时效性和预测功能单一化的问题,本文在长短期记忆网络(LSTM)的基础上,提出了融合自注意力机制(SA)和时间卷积网络(TCN)的双向长短期记忆(BiLSTM)神经网络(BiLSTM-SA-TCN)股票预测模型.BiLSTM-SA-TCN模型中的学习单... 针对股票预测模型存在时效性和预测功能单一化的问题,本文在长短期记忆网络(LSTM)的基础上,提出了融合自注意力机制(SA)和时间卷积网络(TCN)的双向长短期记忆(BiLSTM)神经网络(BiLSTM-SA-TCN)股票预测模型.BiLSTM-SA-TCN模型中的学习单元和预测单元可以有效学习重要的股票数据,同时能够抓取长时间的依赖信息,输出次日股票收盘价预测值.实验结果表明,BiLSTM-SA-TCN模型在多个数据集上的预测结果更加稳定,模型泛化能力较高,在对比实验中,BiLSTM-SA-TCN模型在大部分数据集上均方根误差最小,平均绝对值误差最小,拟合度R^(2)最优. 展开更多
关键词 股票价格预测 长短期记忆网络 注意力机制 时间卷积网络
下载PDF
基于注意力时间卷积网络的农产品期货分解集成预测
5
作者 张大斌 黄均杰 +1 位作者 凌立文 林锐斌 《南京信息工程大学学报》 CAS 北大核心 2024年第3期311-320,共10页
针对农产品期货时间序列数据受多方面因素影响,非线性、非平稳数据特征难以提取而导致预测准确性不高的问题,基于“分解-集成”的预测思想,本文提出一种基于自适应噪声完备经验模态分解(CEEMDAN)与Transformer-Encoder-TCN的农产品期货... 针对农产品期货时间序列数据受多方面因素影响,非线性、非平稳数据特征难以提取而导致预测准确性不高的问题,基于“分解-集成”的预测思想,本文提出一种基于自适应噪声完备经验模态分解(CEEMDAN)与Transformer-Encoder-TCN的农产品期货预测方法.首先,使用CEEMDAN将时间序列分解为多尺度多频率的本征模态分量(IMF)与残差,降低了序列建模复杂度;其次,使用融合多阶段自注意力单元Transformer-Encoder的时间卷积网络(TCN)对各个分量子序列进行特征提取与预测,优化了序列显著特征建模权重;最后,将各个子序列预测值线性相加集成得到最终预测结果.以南华期货公司农产品指数中的大豆期货指数为研究对象,采用时序交叉验证与参数迁移的方式进行模型重训练,消融和对比实验结果表明,提出的新模型在RMSE、MAE和DS三个评价指标上具有良好的效果,验证了该模型对农产品期货预测的有效性. 展开更多
关键词 农产品期货 自适应噪声完备经验模态分解 自注意力机制 Transformer-Encoder 时间卷积网络
下载PDF
基于联合时序场景和改进TCN的高比例新能源电网负荷预测
6
作者 许青 张龄之 +1 位作者 梁琛 李亚昕 《广东电力》 北大核心 2024年第1期1-7,共7页
为充分挖掘新型电力系统建设过程中高比例新能源并网对负荷预测的影响,以风光负荷数据为研究对象,提出一种基于联合时序场景和改进型时间卷积网络的短期负荷预测方法。首先,基于3σ准则对风光负荷历史数据进行分析,剔除异常数据,然后应... 为充分挖掘新型电力系统建设过程中高比例新能源并网对负荷预测的影响,以风光负荷数据为研究对象,提出一种基于联合时序场景和改进型时间卷积网络的短期负荷预测方法。首先,基于3σ准则对风光负荷历史数据进行分析,剔除异常数据,然后应用联合时序场景刻画负荷需求与风光出力的相关性,分类出不同负荷预测场景。接着,利用随机森林算法进行负荷预测特征量提取,构建随机森林时间卷积网络(RF-TCN)预测模型,并采用Bootstrap算法对预测结果进行修正。最后,以甘肃省2022年数据为例进行仿真,并设置4种对比算例。仿真结果证明了所提方法的有效性,以期在新型电力系统建设过程中发挥积极作用。 展开更多
关键词 新型电力系统 联合时序场景 高比例新能源电网 负荷预测 3σ准则 时间卷积网络 随机森林 BOOTSTRAP法
下载PDF
长白山红松阔叶林的净碳交换变化及基于时间卷积神经网络的模拟 被引量:4
7
作者 齐建东 谭新新 《林业科学》 EI CAS CSCD 北大核心 2022年第2期1-12,共12页
【目的】分析长白山红松阔叶林净生态系统碳交换量(NEE)的季节性差异及其气象因子响应,在月尺度下揭示气象因子对NEE的动态影响,为调节研究地区的碳收支提供理论指导。同时研究时间卷积神经网络在森林生态系统净碳交换模拟中的应用,探索... 【目的】分析长白山红松阔叶林净生态系统碳交换量(NEE)的季节性差异及其气象因子响应,在月尺度下揭示气象因子对NEE的动态影响,为调节研究地区的碳收支提供理论指导。同时研究时间卷积神经网络在森林生态系统净碳交换模拟中的应用,探索NEE模拟的新方法。【方法】基于长白山温带红松阔叶林通量观测站2007—2010年间的30 min观测数据,分析NEE和输入模型的5种气象因子的季节性差异,并分析5种气象因子与NEE的相关性。使用随机森林模型,计算影响NEE的各因子重要性得分,选择得分较高的5种气象因子:潜热通量、显热通量、冠层上方空气湿度、冠层上方水汽压和净辐射作为NEE模拟的输入;分别构建基于时间卷积神经网络(TCN)、长短期记忆网络(LSTM)、人工神经网络(ANN)、支持向量回归(SVR)和极限学习机(ELM)的5种NEE模型,采用决定系数(R^(2))、平均绝对误差(MAE)和均方根误差(RMSE)评价模型的预测精度和稳定性。【结果】长白山温带红松阔叶林通量观测站NEE全年总量为-74.7773 gCO_(2)·m^(-2)a-1,总体表现为碳汇,但夏季表现为碳汇,冬季表现为碳源;NEE与潜热通量、冠层上方水汽压、净辐射和冠层上方空气湿度均极显著负相关(P<0.0001),和显热通量相关性不显著;TCN模型的RMSE为0.1105 mgCO_(2)·m^(-2)s^(-1),R^(2)为0.8214,RMSE分别比ELM、SVR、ANN和LSTM减少0.0248、0.0224、0.0222和0.0068 mgCO_(2)·m^(-2)s^(-1),R^(2)分别比ELM、SVR、ANN和LSTM增加0.0806、0.0777、0.0686、0.0223;根据5种模型的10次试验结果,计算得到TCN模型RMSE的标准差为0.0004 mgCO_(2)·m^(-2)s^(-1),相比ELM、ANN和LSTM分别减小0.0014、0.0013和0.0002 mgCO_(2)·m^(-2)s^(-1)。【结论】长白山温带红松阔叶林通量观测站的NEE总体表现为碳汇,但存在明显的季节差异;NEE与潜热通量、冠层上方水汽压、冠层上方空气湿度、净辐射极显著负相关(P<0.0001),与显热通� 展开更多
关键词 时间卷积神经网络 NEE 长白山红松阔叶林
下载PDF
基于改进ECANet-TCN和迁移学习的轴承剩余寿命预测 被引量:1
8
作者 王焱 丁华 +3 位作者 孙晓春 李莉 刘泽平 楚寒驰 《振动与冲击》 EI CSCD 北大核心 2023年第21期149-159,共11页
针对轴承运行工况不同、有效数据少、数据无标签、预测准确度低等问题,提出一种基于改进时间卷积网络的迁移学习轴承寿命预测模型,将模型在源域上学习的寿命预测知识迁移到目标域,可用小样本无标签数据训练出迁移模型。首先,采用有效通... 针对轴承运行工况不同、有效数据少、数据无标签、预测准确度低等问题,提出一种基于改进时间卷积网络的迁移学习轴承寿命预测模型,将模型在源域上学习的寿命预测知识迁移到目标域,可用小样本无标签数据训练出迁移模型。首先,采用有效通道注意力模块对源域数据特征重新标定;其次,使用时间卷积网络(temporal convolutional network,TCN)学习特征信息,并训练出最优源域模型;最后,利用源域数据、源域模型和目标域数据训练出迁移模型,迁移模型可以对不同设备不同工况信号进行剩余寿命预测。在IEEE PHM Challenge 2012轴承全寿命数据集和西安交通大学XJTU-SY滚动轴承加速寿命数据集上开展对比试验,结果表明,该方法可以更好地挖掘轴承内在退化趋势,有效提高剩余使用寿命预测精度,对比现有流行预测方法预测误差降低40.1%~77.8%,证明了该方法在不同设备不同工况条件下剩余寿命预测的有效性和可行性。 展开更多
关键词 轴承 剩余寿命预测 ECANet 时间卷积网络 迁移学习
下载PDF
基于改进1DCNN+TCN的雷达辐射源快速识别方法 被引量:3
9
作者 金涛 王晓峰 +1 位作者 田润澜 张歆东 《系统工程与电子技术》 EI CSCD 北大核心 2022年第2期463-469,共7页
为了解决传统雷达辐射源识别方式识别速度慢、在低信噪比时很难准确识别等问题,结合深度学习提出了一种基于改进一维卷积神经网络(one-dimensional convolutional neural network,1DCNN)和时间卷积网络(temporal convolutional network,... 为了解决传统雷达辐射源识别方式识别速度慢、在低信噪比时很难准确识别等问题,结合深度学习提出了一种基于改进一维卷积神经网络(one-dimensional convolutional neural network,1DCNN)和时间卷积网络(temporal convolutional network,TCN)的雷达辐射源快速识别模型。在1DCNN的基础上加入了批归一化层,并在全连接层前加入注意力机制;同时在原有TCN的基础上进行改进,使用Leaky ReLU激活函数代替ReLU函数;将改进后的TCN与1DCNN相连接。仿真实验结果分析表明,该模型不仅能够迅速识别出辐射源信号,识别准确率也较高,能够有效平衡模型识别速度和识别精度。 展开更多
关键词 辐射源信号快速识别 时间序列 时间卷积网络 一维卷积神经网络 参数化线性修正单元 注意力机制
下载PDF
基于深度时间卷积神经网络与迁移学习的流程制造工艺过程质量时序关联预测
10
作者 阴艳超 施成娟 +1 位作者 邹朝普 刘孝保 《中国机械工程》 EI CAS CSCD 北大核心 2023年第14期1659-1671,共13页
针对流程生产多工艺参数时序耦合导致的生产质量难以准确预测的问题,提出了基于深度时间卷积神经网络与迁移学习的生产质量快速高效预测方法。借助序列到序列的学习框架,采用深度时间卷积神经网络和时序注意力机制构成的编码器提取多源... 针对流程生产多工艺参数时序耦合导致的生产质量难以准确预测的问题,提出了基于深度时间卷积神经网络与迁移学习的生产质量快速高效预测方法。借助序列到序列的学习框架,采用深度时间卷积神经网络和时序注意力机制构成的编码器提取多源关键时序特征,采用残差长短期记忆神经网络构成的解码器挖掘质量时序信息,引入迁移学习解决预测模型对生产质量在线预测适应性的问题。实验表明所提方法的预测精度与稳定性优势显著,且在小样本数据预测时具有较高的预测精度和计算效率。 展开更多
关键词 工艺过程质量 时序关联预测 序列到序列 时间卷积神经网络 迁移学习
下载PDF
融合共空间模式与脑网络特征的EEG抑郁识别 被引量:2
11
作者 王怡忻 朱湘茹 杨利军 《计算机工程与应用》 CSCD 北大核心 2022年第22期150-158,共9页
提出共空间模式算法和脑网络拓扑属性融合的脑电信号(electroencephalography,EEG)特征,结合深度学习模型时序卷积网络(temporal convolution network,TCN)对抑郁组和对照组进行分类。根据相位锁值构建电极通道间相位同步性功能网络,分... 提出共空间模式算法和脑网络拓扑属性融合的脑电信号(electroencephalography,EEG)特征,结合深度学习模型时序卷积网络(temporal convolution network,TCN)对抑郁组和对照组进行分类。根据相位锁值构建电极通道间相位同步性功能网络,分析不同频段下两种类别的功能连接模式。采用多特征融合方法将共空间模式特征和脑网络拓扑特征结合起来,最后结合Fisher score特征选择方法和分类器依赖结构,得到低维高效的特征子集并应用TCN进行分类。在抑郁数据集上的实验结果验证了所提策略的有效性。 展开更多
关键词 抑郁识别 脑电信号(EEG) 共空间模式 时序卷积网络(tcn) 特征选择
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部