With the gradual depletion of mineral resources in the shallow part of the earth,resource exploitation continues to move deeper into the earth,it becomes a hot topic to simulate the whole process of rock strain soften...With the gradual depletion of mineral resources in the shallow part of the earth,resource exploitation continues to move deeper into the earth,it becomes a hot topic to simulate the whole process of rock strain softening,deformation and failure in deep environment,especially under high temperature and high pressure.On the basis of Lemaitre’s strain-equivalent principle,combined with statistics and damage theory,a statistical constitutive model of rock thermal damage under triaxial compression condition is established.At the same time,taking into account the existing damage model is difficult to reflect residual strength after rock failure,the residual strength is considered in this paper by introducing correction factor of damage variable,the model rationality is also verified by experiments.Analysis of results indicates that the damage evolution curve reflects the whole process of rock micro-cracks enclosure,initiation,expansion,penetration,and the formation of macro-cracks under coupled effect of temperature and confining pressure.Rock thermal damage shows logistic growth function with the increase of temperature.Under the same strain condition,rock total damage decreases with the rise of confining pressure.By studying the electron microscope images(SEM)of rock fracture,it is inferred that 35.40 MPa is the critical confining pressure of brittle to plastic transition for this granite.The model parameter F reflects the average strength of rock,and M reflects the morphological characteristics of rock stress–strain curves.The physical meanings of model parameters are clear and the model is suitable for complex stress states,which provides valuable references for the study of rock deformation and stability in deep engineering.展开更多
Changes of temperature extremes over China were evaluated using daily maximum and minimum temperature data from 591 stations for the period 1961-2002. A set of indices of warm extremes, cold extremes and daily tempera...Changes of temperature extremes over China were evaluated using daily maximum and minimum temperature data from 591 stations for the period 1961-2002. A set of indices of warm extremes, cold extremes and daily temperature range (DTR) extremes was studied with a focus on trends. The results showed that the frequency of warm extremes (F WE) increased obviously in most parts of China, and the intensity of warm extremes (I WE) increased significantly in northern China. The opposite distribution was found in the frequency and intensity of cold extremes. The frequency of high DTR extremes was relatively uniform with that of intensity: an obvious increasing trend was located over western China and the east coast, while significant decreases occurred in central, southeastern and northeastern China; the opposite distribution was found for low DTR extreme days. Seasonal trends illustrated that both F WE and I WE showed signifi- cant increasing trends, especially over northeastern China and along the Yangtze Valley basin in spring and winter. A correlation technique was used to link extreme temperature anomalies over China with global temperature anomalies. Three key regions were identified, as follows: northeastern China and its coastal areas, the high-latitude regions above 40~0N, and southwestern China and the equatorial eastern Pacific.展开更多
基金Projects(51604260,11802145)supported by the National Natural Science Foundation of ChinaProject(SKLGDUEK1204)supported by the State Key Laboratory for Geomechanics and Deep Underground Engineering,ChinaProject(BK20160416)supported by the Natural Science Foundation of Jiangsu Province of China
文摘With the gradual depletion of mineral resources in the shallow part of the earth,resource exploitation continues to move deeper into the earth,it becomes a hot topic to simulate the whole process of rock strain softening,deformation and failure in deep environment,especially under high temperature and high pressure.On the basis of Lemaitre’s strain-equivalent principle,combined with statistics and damage theory,a statistical constitutive model of rock thermal damage under triaxial compression condition is established.At the same time,taking into account the existing damage model is difficult to reflect residual strength after rock failure,the residual strength is considered in this paper by introducing correction factor of damage variable,the model rationality is also verified by experiments.Analysis of results indicates that the damage evolution curve reflects the whole process of rock micro-cracks enclosure,initiation,expansion,penetration,and the formation of macro-cracks under coupled effect of temperature and confining pressure.Rock thermal damage shows logistic growth function with the increase of temperature.Under the same strain condition,rock total damage decreases with the rise of confining pressure.By studying the electron microscope images(SEM)of rock fracture,it is inferred that 35.40 MPa is the critical confining pressure of brittle to plastic transition for this granite.The model parameter F reflects the average strength of rock,and M reflects the morphological characteristics of rock stress–strain curves.The physical meanings of model parameters are clear and the model is suitable for complex stress states,which provides valuable references for the study of rock deformation and stability in deep engineering.
基金supported by the National Natural Science Foundation of China under Grant Nos. 40675042, 40901016 and 40805041
文摘Changes of temperature extremes over China were evaluated using daily maximum and minimum temperature data from 591 stations for the period 1961-2002. A set of indices of warm extremes, cold extremes and daily temperature range (DTR) extremes was studied with a focus on trends. The results showed that the frequency of warm extremes (F WE) increased obviously in most parts of China, and the intensity of warm extremes (I WE) increased significantly in northern China. The opposite distribution was found in the frequency and intensity of cold extremes. The frequency of high DTR extremes was relatively uniform with that of intensity: an obvious increasing trend was located over western China and the east coast, while significant decreases occurred in central, southeastern and northeastern China; the opposite distribution was found for low DTR extreme days. Seasonal trends illustrated that both F WE and I WE showed signifi- cant increasing trends, especially over northeastern China and along the Yangtze Valley basin in spring and winter. A correlation technique was used to link extreme temperature anomalies over China with global temperature anomalies. Three key regions were identified, as follows: northeastern China and its coastal areas, the high-latitude regions above 40~0N, and southwestern China and the equatorial eastern Pacific.