期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Hydrophilic Silica/Copolymer Nanoparticles and Protein-Resistance Coatings
1
作者 Hongpu Huang Ling He 《Journal of Materials Science and Chemical Engineering》 2016年第1期18-23,共6页
Hydrophilic silica/copolymer nanoparticles of SiO<sub>2</sub>-g-P(PEGMA)-b-P(PEG) are prepared by silica surface-initiating atom transfer radical polymerization (SI-ATRP) of poly (ethylene glycol) methyl e... Hydrophilic silica/copolymer nanoparticles of SiO<sub>2</sub>-g-P(PEGMA)-b-P(PEG) are prepared by silica surface-initiating atom transfer radical polymerization (SI-ATRP) of poly (ethylene glycol) methyl ether methacrylate (PEGMA) and poly(ethylene glycol) methacrylate (PEG), by using Three molar ratios of SiO<sub>2</sub>-Br/PEGMA/PEG as 1/42.46/19.44, 1/42.46/38.88 and 1/42.46/77.76. Their temperature sensitive behaviour, pH response and surface properties as protein-resistance coatings are characterized. 220 nm core-shell nanoparticles as P(PEGMA)-b-P(PEG) shell grafted on SiO2 core are formed in water solution, which gained LCST at 60<sup>。</sup>C - 77<sup>。</sup>C and good dispersion in water when pH > 5.0. The water-casted films by SiO<sub>2</sub>-g-P(PEGMA)-b-P(PEG) obtain a little rough surface (Ra = 26.8 - 29.7 nm). While, the introduction of P(PEG) segments could slight increase the protein-repelling adsorption of SiO<sub>2</sub>-g-P(PEGMA)-b-P(PEG) films (△f = ?6.96 Hz ~ ?7.25 Hz) compared with SiO2-g-P(PEGMA) films (△f = ?9.5 Hz). Therefore, SiO2-g-P(PEGMA)-b-P(PEG) could be used as protein-resistance coatings. 展开更多
关键词 Silica/Copolymer Hydrophilic Nanoparticles tem-responsive Protein-Resistance COATINGS
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部