This paper presents a novel multiple Unmanned Aerial Vehicles(UAVs) reconnaissance task allocation model for heterogeneous targets and an effective genetic algorithm to optimize UAVs' task sequence. Heterogeneous t...This paper presents a novel multiple Unmanned Aerial Vehicles(UAVs) reconnaissance task allocation model for heterogeneous targets and an effective genetic algorithm to optimize UAVs' task sequence. Heterogeneous targets are classified into point targets, line targets and area targets according to features of target geometry and sensor's field of view. Each UAV is regarded as a Dubins vehicle to consider the kinematic constraints. And the objective of task allocation is to minimize the task execution time and UAVs' total consumptions. Then, multi-UAV reconnaissance task allocation is formulated as an extended Multiple Dubins Travelling Salesmen Problem(MDTSP), where visit paths to the heterogeneous targets must meet specific constraints due to the targets' feature. As a complex combinatorial optimization problem, the dimensions of MDTSP are further increased due to the heterogeneity of targets. To efficiently solve this computationally expensive problem, the Opposition-based Genetic Algorithm using Double-chromosomes Encoding and Multiple Mutation Operators(OGA-DEMMO) is developed to improve the population variety for enhancing the global exploration capability. The simulation results demonstrate that OGADEMMO outperforms the ordinary genetic algorithm, ant colony optimization and random search in terms of optimality of the allocation results, especially for large scale reconnaissance task allocation problems.展开更多
针对云计算中的任务调度问题,提出了一种任务调度的增强蚁群算法(task scheduling-enhanced ant colony optimization,TS-EACO)。算法兼顾了任务调度的最短完成时间和负载平衡,同时参考了近年来蚁群算法的各种改进,创新地将任务在虚拟...针对云计算中的任务调度问题,提出了一种任务调度的增强蚁群算法(task scheduling-enhanced ant colony optimization,TS-EACO)。算法兼顾了任务调度的最短完成时间和负载平衡,同时参考了近年来蚁群算法的各种改进,创新地将任务在虚拟机上的一次分配作为蚂蚁的搜索对象。实验在CloudSim仿真平台下进行,并将仿真结果与Round Robin算法和标准蚁群算法进行比较,结果表明TS-EACO算法的任务执行时间和负载平衡性能均优于这两种算法。展开更多
基金co-supported by the National Natural Science Foundation of China (Nos. 51675047, 11372036, and 51105040)the Aeronautical Science Foundation of China (No. 2015ZA72004)
文摘This paper presents a novel multiple Unmanned Aerial Vehicles(UAVs) reconnaissance task allocation model for heterogeneous targets and an effective genetic algorithm to optimize UAVs' task sequence. Heterogeneous targets are classified into point targets, line targets and area targets according to features of target geometry and sensor's field of view. Each UAV is regarded as a Dubins vehicle to consider the kinematic constraints. And the objective of task allocation is to minimize the task execution time and UAVs' total consumptions. Then, multi-UAV reconnaissance task allocation is formulated as an extended Multiple Dubins Travelling Salesmen Problem(MDTSP), where visit paths to the heterogeneous targets must meet specific constraints due to the targets' feature. As a complex combinatorial optimization problem, the dimensions of MDTSP are further increased due to the heterogeneity of targets. To efficiently solve this computationally expensive problem, the Opposition-based Genetic Algorithm using Double-chromosomes Encoding and Multiple Mutation Operators(OGA-DEMMO) is developed to improve the population variety for enhancing the global exploration capability. The simulation results demonstrate that OGADEMMO outperforms the ordinary genetic algorithm, ant colony optimization and random search in terms of optimality of the allocation results, especially for large scale reconnaissance task allocation problems.