空间目标由于高速运动和微运动在电磁波上的调制效应,其动态实测的雷达散射截面(radar cross section,RCS)和高分辨一维距离像(high resolution range profile,HRRP)与暗室测量或电磁计算数据存在较大的差异。针对空间目标外场动态测量...空间目标由于高速运动和微运动在电磁波上的调制效应,其动态实测的雷达散射截面(radar cross section,RCS)和高分辨一维距离像(high resolution range profile,HRRP)与暗室测量或电磁计算数据存在较大的差异。针对空间目标外场动态测量数据难以获取的难题,提出了用目标静态数据生成动态RCS和一维距离像数据的方法。该方法首先确定目标的轨道和雷达的布站坐标及工作模式,而后计算目标在雷达观测视线(line of sight,LOS)方向上的姿态和运动参数,最后根据空间目标高速运动、自旋、进动等在电磁波上调制的数学模型生成动态测量数据。给出了该方法的具体步骤,仿真实验证明了方法的有效性。展开更多
When range high-resolution radar is applied to target recognition,it is quite possible for the high-resolution range profiles(HRRPs)of group targets in a beam to overlap,which reduces the target recognition performanc...When range high-resolution radar is applied to target recognition,it is quite possible for the high-resolution range profiles(HRRPs)of group targets in a beam to overlap,which reduces the target recognition performance of the radar.In this paper,we propose a group target recognition method based on a weighted mean shift(weighted-MS)clustering method.During the training phase,subtarget features are extracted based on the template database,which is established through simulation or data acquisition,and the features are fed to the support vector machine(SVM)classifier to obtain the classifier parameters.In the test phase,the weighted-MS algorithm is exploited to extract the HRRP of each subtarget.Then,the features of the subtarget HRRP are extracted and used as input in the SVM classifier to be recognized.Compared to the traditional group target recognition method,the proposed method has the advantages of requiring only a small amount of computation,setting parameters automatically,and having no requirement for target motion.The experimental results based on the measured data show that the method proposed in this paper has better recognition performance and is more robust against noise than other recognition methods.展开更多
In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) ba...In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) based on the maximum margin criterion(MMC) is proposed for recognizing the class of ship targets utilizing the high-resolution range profile(HRRP). Multi-scale fusion is introduced to capture the local and detailed information in small-scale features, and the global and contour information in large-scale features, offering help to extract the edge information from sea clutter and further improving the target recognition accuracy. The proposed method can maximally preserve the multi-scale fusion sparse of data and maximize the class separability in the reduced dimensionality by reproducing kernel Hilbert space. Experimental results on the measured radar data show that the proposed method can effectively extract the features of ship target from sea clutter, further reduce the feature dimensionality, and improve target recognition performance.展开更多
扩展目标检测通常采用距离像能量积累检测的方法,由于距离像信息掌握不完备,陷落损失会降低检测性能。本文提出一种距离像先验引导的扩展目标检测方法,通过利用距离像包络模先验,对信号进行积累以提升检测性能。该方法考虑了复距离像与...扩展目标检测通常采用距离像能量积累检测的方法,由于距离像信息掌握不完备,陷落损失会降低检测性能。本文提出一种距离像先验引导的扩展目标检测方法,通过利用距离像包络模先验,对信号进行积累以提升检测性能。该方法考虑了复距离像与复高斯白噪声的相干叠加与相位预测不准的因素,采用将观测数据取模的检测模型,基于似然比检测(Likelihood Ratio Test,LRT)理论推导了低信噪比下的特征平方匹配检测器。该检测器将目标复距离像的包络模与观测数据的包络模进行平方匹配,并通过门限判决来判断目标是否存在。包络模先验的获取是通过从ISAR图像提取二维散射中心,向对应姿态角下的雷达视线方向进行投影,来获得目标近似的一维散射中心模型,再由该模型进一步生成目标距离像的包络模先验。同时,本文从理论与实验两方面分析了能量检测器和特征平方匹配检测器之间的关系,通过散射中心模型重构与暗室测量的方法获取数据进行了实验验证。实验结果表明:在低信噪比下,距离像先验引导的特征平方匹配检测器能有效提升目标的检测性能,并且对先验模型失配的情况具有良好的适应性。展开更多
入流控制装置(Inflow Control Device,ICD)近年来在水平井分段完井中应用日益广泛,但目前针对ICD完井建立的半解析耦合模型无法准确反映水平井端部效应,在ICD优化设计过程中对于目标入流剖面的选择缺乏依据。为此,首先引入了基于势的叠...入流控制装置(Inflow Control Device,ICD)近年来在水平井分段完井中应用日益广泛,但目前针对ICD完井建立的半解析耦合模型无法准确反映水平井端部效应,在ICD优化设计过程中对于目标入流剖面的选择缺乏依据。为此,首先引入了基于势的叠加原理和镜像反射原理的油藏渗流模型用以准确反映水平井入流特征,建立了适用于非均质底水油藏水平井ICD完井的稳态耦合模型;之后考虑油井不同的生产制度,给出了非均质油藏水平井ICD完井优化目标入流剖面的确定方法,并以喷嘴型ICD为例对ICD设计流程进行了具体描述,对最优非均匀ICD和最优均匀ICD计算结果进行了对比分析。结果表明:ICD优化设计与生产制度有很大关系,均匀入流剖面并非总是理想的入流剖面;非均匀ICD控流效果要优于均匀ICD,但均匀ICD完井对井底流压有较宽的适应性;高生产压差有助于发挥喷嘴型ICD的控流优势。展开更多
文摘空间目标由于高速运动和微运动在电磁波上的调制效应,其动态实测的雷达散射截面(radar cross section,RCS)和高分辨一维距离像(high resolution range profile,HRRP)与暗室测量或电磁计算数据存在较大的差异。针对空间目标外场动态测量数据难以获取的难题,提出了用目标静态数据生成动态RCS和一维距离像数据的方法。该方法首先确定目标的轨道和雷达的布站坐标及工作模式,而后计算目标在雷达观测视线(line of sight,LOS)方向上的姿态和运动参数,最后根据空间目标高速运动、自旋、进动等在电磁波上调制的数学模型生成动态测量数据。给出了该方法的具体步骤,仿真实验证明了方法的有效性。
文摘When range high-resolution radar is applied to target recognition,it is quite possible for the high-resolution range profiles(HRRPs)of group targets in a beam to overlap,which reduces the target recognition performance of the radar.In this paper,we propose a group target recognition method based on a weighted mean shift(weighted-MS)clustering method.During the training phase,subtarget features are extracted based on the template database,which is established through simulation or data acquisition,and the features are fed to the support vector machine(SVM)classifier to obtain the classifier parameters.In the test phase,the weighted-MS algorithm is exploited to extract the HRRP of each subtarget.Then,the features of the subtarget HRRP are extracted and used as input in the SVM classifier to be recognized.Compared to the traditional group target recognition method,the proposed method has the advantages of requiring only a small amount of computation,setting parameters automatically,and having no requirement for target motion.The experimental results based on the measured data show that the method proposed in this paper has better recognition performance and is more robust against noise than other recognition methods.
基金supported by the National Natural Science Foundation of China (62271255,61871218)the Fundamental Research Funds for the Central University (3082019NC2019002)+1 种基金the Aeronautical Science Foundation (ASFC-201920007002)the Program of Remote Sensing Intelligent Monitoring and Emergency Services for Regional Security Elements。
文摘In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) based on the maximum margin criterion(MMC) is proposed for recognizing the class of ship targets utilizing the high-resolution range profile(HRRP). Multi-scale fusion is introduced to capture the local and detailed information in small-scale features, and the global and contour information in large-scale features, offering help to extract the edge information from sea clutter and further improving the target recognition accuracy. The proposed method can maximally preserve the multi-scale fusion sparse of data and maximize the class separability in the reduced dimensionality by reproducing kernel Hilbert space. Experimental results on the measured radar data show that the proposed method can effectively extract the features of ship target from sea clutter, further reduce the feature dimensionality, and improve target recognition performance.
文摘扩展目标检测通常采用距离像能量积累检测的方法,由于距离像信息掌握不完备,陷落损失会降低检测性能。本文提出一种距离像先验引导的扩展目标检测方法,通过利用距离像包络模先验,对信号进行积累以提升检测性能。该方法考虑了复距离像与复高斯白噪声的相干叠加与相位预测不准的因素,采用将观测数据取模的检测模型,基于似然比检测(Likelihood Ratio Test,LRT)理论推导了低信噪比下的特征平方匹配检测器。该检测器将目标复距离像的包络模与观测数据的包络模进行平方匹配,并通过门限判决来判断目标是否存在。包络模先验的获取是通过从ISAR图像提取二维散射中心,向对应姿态角下的雷达视线方向进行投影,来获得目标近似的一维散射中心模型,再由该模型进一步生成目标距离像的包络模先验。同时,本文从理论与实验两方面分析了能量检测器和特征平方匹配检测器之间的关系,通过散射中心模型重构与暗室测量的方法获取数据进行了实验验证。实验结果表明:在低信噪比下,距离像先验引导的特征平方匹配检测器能有效提升目标的检测性能,并且对先验模型失配的情况具有良好的适应性。
文摘入流控制装置(Inflow Control Device,ICD)近年来在水平井分段完井中应用日益广泛,但目前针对ICD完井建立的半解析耦合模型无法准确反映水平井端部效应,在ICD优化设计过程中对于目标入流剖面的选择缺乏依据。为此,首先引入了基于势的叠加原理和镜像反射原理的油藏渗流模型用以准确反映水平井入流特征,建立了适用于非均质底水油藏水平井ICD完井的稳态耦合模型;之后考虑油井不同的生产制度,给出了非均质油藏水平井ICD完井优化目标入流剖面的确定方法,并以喷嘴型ICD为例对ICD设计流程进行了具体描述,对最优非均匀ICD和最优均匀ICD计算结果进行了对比分析。结果表明:ICD优化设计与生产制度有很大关系,均匀入流剖面并非总是理想的入流剖面;非均匀ICD控流效果要优于均匀ICD,但均匀ICD完井对井底流压有较宽的适应性;高生产压差有助于发挥喷嘴型ICD的控流优势。