采用Volume of Fluid(VOF)模型对罐车制动时液体的晃动进行了数值模拟,对单室受力、受力位置及整车轴荷分配进行了计算,并通过与实验结果的对比验证了计算方法的可靠性.计算结果表明,无防波板时,随减速度增加,单室x,y方向受力峰值增大,...采用Volume of Fluid(VOF)模型对罐车制动时液体的晃动进行了数值模拟,对单室受力、受力位置及整车轴荷分配进行了计算,并通过与实验结果的对比验证了计算方法的可靠性.计算结果表明,无防波板时,随减速度增加,单室x,y方向受力峰值增大,整车轴荷比增大;随充液比增加,单室x方向受力峰值先增大后减小,y方向受力峰值增大,制动初始与结束时充液比越大轴荷比越大,1 s左右充液比越大轴荷比越小;单室带防波板时,随防波板面积增加,x,y方向受力峰值减小,当防波板面积大于横截面的40%时,增加防波板面积能显著改善罐体受力,且防波板面积越大轴荷比峰值越小.展开更多
The influence of baffle position on liquid sloshing during the braking and turning of a tank truck was studied using a volume of fluid (VOF) model. The forces,their positions and weight distribution during braking and...The influence of baffle position on liquid sloshing during the braking and turning of a tank truck was studied using a volume of fluid (VOF) model. The forces,their positions and weight distribution during braking and the forces and rolling moment during turning were calculated. The reliability of the calculation method was validated by comparisons with experimental results. The results showed that during braking,liquid splashes in the tank and the maximum forces and G (the ratio of weight acting on the front axle to the rear axle) are large when A (the ratio of the arch area above the baffle to the area of cross section)≤0.1. When A≥0.2,as the position of the baffle is lowered,the maximum of Fx (the force in direction x) first decreases then increases,and the maximum of Fy (the force in direction y) and G increase. During turning,liquid splashes in the tank and the maximum forces and M (the rolling moment) are large when D (the ratio of the arch area above the baffle to the area of cross section)≤0.2. When D≥0.3,as the position of the baffle is lowered,the maximums of Fy,Fz (the force in direction z) and M increase.展开更多
文摘采用Volume of Fluid(VOF)模型对罐车制动时液体的晃动进行了数值模拟,对单室受力、受力位置及整车轴荷分配进行了计算,并通过与实验结果的对比验证了计算方法的可靠性.计算结果表明,无防波板时,随减速度增加,单室x,y方向受力峰值增大,整车轴荷比增大;随充液比增加,单室x方向受力峰值先增大后减小,y方向受力峰值增大,制动初始与结束时充液比越大轴荷比越大,1 s左右充液比越大轴荷比越小;单室带防波板时,随防波板面积增加,x,y方向受力峰值减小,当防波板面积大于横截面的40%时,增加防波板面积能显著改善罐体受力,且防波板面积越大轴荷比峰值越小.
文摘The influence of baffle position on liquid sloshing during the braking and turning of a tank truck was studied using a volume of fluid (VOF) model. The forces,their positions and weight distribution during braking and the forces and rolling moment during turning were calculated. The reliability of the calculation method was validated by comparisons with experimental results. The results showed that during braking,liquid splashes in the tank and the maximum forces and G (the ratio of weight acting on the front axle to the rear axle) are large when A (the ratio of the arch area above the baffle to the area of cross section)≤0.1. When A≥0.2,as the position of the baffle is lowered,the maximum of Fx (the force in direction x) first decreases then increases,and the maximum of Fy (the force in direction y) and G increase. During turning,liquid splashes in the tank and the maximum forces and M (the rolling moment) are large when D (the ratio of the arch area above the baffle to the area of cross section)≤0.2. When D≥0.3,as the position of the baffle is lowered,the maximums of Fy,Fz (the force in direction z) and M increase.