期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于模糊子空间聚类的〇阶L2型TSK模糊系统 被引量:7
1
作者 邓赵红 张江滨 +2 位作者 蒋亦樟 史荧中 王士同 《电子与信息学报》 EI CSCD 北大核心 2015年第9期2082-2088,共7页
经典数据驱动型TSK(Takagi-Sugeno-Kang)模糊系统在获取模糊规则时,会考虑数据的所有特征空间,其带来一个重要缺陷:如果数据的特征空间维数过高,则系统获取的模糊规则繁杂,使系统复杂度增加而导致解释性下降。该文针对此缺陷,探讨了一... 经典数据驱动型TSK(Takagi-Sugeno-Kang)模糊系统在获取模糊规则时,会考虑数据的所有特征空间,其带来一个重要缺陷:如果数据的特征空间维数过高,则系统获取的模糊规则繁杂,使系统复杂度增加而导致解释性下降。该文针对此缺陷,探讨了一种基于模糊子空间聚类的〇阶L2型TSK模糊系统(Fuzzy Subspace Clustering based zero-order L2-norm TSK Fuzzy System,FSC-0-L2-TSK-FS)构建新方法。新方法构建的模糊系统不仅能缩减模糊规则前件的特征空间,而且获取的模糊规则可对应于不同的特征子空间,从而具有更接近人类思维的推理机制。模拟和真实数据集上的建模结果表明,新方法增强了面对高维数据所建模型的解释性,同时所建模型得到了较之于一些经典方法更好或可比较的泛化性能。 展开更多
关键词 takagi-sugeno-kang(tsk)模糊系统 医疗诊断 解释性 高维数据
下载PDF
基于模糊子空间聚类的0阶岭回归TSK模糊系统 被引量:6
2
作者 邓赵红 张江滨 +1 位作者 蒋亦樟 王士同 《控制与决策》 EI CSCD 北大核心 2016年第5期882-888,共7页
经典数据驱动型TSK模糊系统在利用高维数据训练模型时,由于规则前件采用的特征过多,导致规则的解释性和简洁性下降.对此,根据模糊子空间聚类算法的子空间特性,为TSK模型添加特征抽取机制,并进一步利用岭回归实现后件的学习,提出一种基... 经典数据驱动型TSK模糊系统在利用高维数据训练模型时,由于规则前件采用的特征过多,导致规则的解释性和简洁性下降.对此,根据模糊子空间聚类算法的子空间特性,为TSK模型添加特征抽取机制,并进一步利用岭回归实现后件的学习,提出一种基于模糊子空间聚类的0阶岭回归TSK模型构建方法.该方法不仅能为规则抽取出重要子空间特征,而且可为不同规则抽取不同的特征.在模拟和真实数据集上的实验结果验证了所提出方法的优势. 展开更多
关键词 解释性 高维数据 岭回归 tsk模糊系统
原文传递
面向自闭症辅助诊断的深度对比模糊神经网络
3
作者 陆昭吾 王骏 施俊 《计算机工程》 CAS CSCD 北大核心 2023年第4期263-271,共9页
静息态功能磁共振成像(rs-fMRI)可有效反映大脑活动状况,然而rs-fMRI数据的高随机性和自闭症谱系障碍(ASD)内在的高异质性给ASD计算机辅助诊断带来了不确定性。提出一种基于对比损失的Takagi-Sugeno-Kang(TSK)深度模糊神经网络CL-DeepT... 静息态功能磁共振成像(rs-fMRI)可有效反映大脑活动状况,然而rs-fMRI数据的高随机性和自闭症谱系障碍(ASD)内在的高异质性给ASD计算机辅助诊断带来了不确定性。提出一种基于对比损失的Takagi-Sugeno-Kang(TSK)深度模糊神经网络CL-DeepTSK,结合多输出TSK(MO-TSK)模糊系统与多层感知机(MLP)有效缓解数据不确定性对模型的影响,提升TSK模糊系统的表达能力,并使模型更具可解释性。使用对比损失目标学习准则对MO-TSK与MLP进行联合优化,提高训练样本缺乏时的模型泛化性能。在ABIDE数据集上的实验结果表明,CLDeepTSK的平均正确率和AUC指标分别达到70.0%和0.773,同时获得了30个最具鉴别性的功能连接。上述实验结果证明了CL-DeepTSK能够有效地进行自闭症辅助诊断,并且具有较高的可解释性。 展开更多
关键词 自闭症谱系障碍 静息态功能性磁共振成像 takagi-sugeno-kang模糊系统 对比损失 计算机辅助诊断
下载PDF
多层递阶融合模糊特征映射的模糊C均值聚类算法 被引量:1
4
作者 鲍国强 应文豪 +3 位作者 蒋亦樟 张英 王骏 王士同 《智能系统学报》 CSCD 北大核心 2018年第4期594-601,共8页
针对复杂非线性数据的无监督学习问题,提出一种新型的映射方式来有效提高算法对复杂非线性数据的学习能力。以TSK模糊系统的规则前件学习为基础,提出一种新型的模糊特征映射新方法。接着,针对映射之后的数据维度过大问题,引入多层递阶... 针对复杂非线性数据的无监督学习问题,提出一种新型的映射方式来有效提高算法对复杂非线性数据的学习能力。以TSK模糊系统的规则前件学习为基础,提出一种新型的模糊特征映射新方法。接着,针对映射之后的数据维度过大问题,引入多层递阶融合的概念,进一步提出基于多层递阶融合的模糊特征映射新方法,从而有效避免了因单层模糊特征映射之后特征维数过高而导致的数据混乱和冗余的问题。最后与模糊C均值算法相结合,提出基于多层递阶融合模糊特征映射的模糊C均值聚类算法。实验研究表明,文中算法相比于经典模糊聚类方法,有着更加优越、稳定的性能。 展开更多
关键词 takagi-sugeno-kang(tsk)模糊系统 主成分分析(PCA) 无监督学习 模糊C均值聚类
下载PDF
基于监督学习的Takagi Sugeno Kang模糊系统图像融合方法研究 被引量:5
5
作者 李奕 吴小俊 《电子与信息学报》 EI CSCD 北大核心 2014年第5期1126-1132,共7页
该文针对图像融合领域内难于对先验知识加以利用的问题提出一种新的有监督学习的Takagi Sugeno Kang(TSK)模糊系统图像融合方法。该方法通过引入TSK模糊系统构建标准图像融合图像库进行学习,将学习准则记录下来形成融合模型,并指导新的... 该文针对图像融合领域内难于对先验知识加以利用的问题提出一种新的有监督学习的Takagi Sugeno Kang(TSK)模糊系统图像融合方法。该方法通过引入TSK模糊系统构建标准图像融合图像库进行学习,将学习准则记录下来形成融合模型,并指导新的图像融合过程。不同于传统方法,该方法可以有效地避免模型参数择优的难题,在融合图像质量和适用范围方面表现出一定的优势。从单一类型图像融合和多种类型图像融合两个角度进行了实验研究,实验结果说明该方法的有效性。 展开更多
关键词 图像融合 监督学习 takagi sugeno kang(tsk)模糊系统
下载PDF
具备视角协同学习能力的多视角TSK型模糊系统 被引量:1
6
作者 程旸 顾晓清 +3 位作者 蒋亦樟 杭文龙 钱鹏江 王士同 《电子与信息学报》 EI CSCD 北大核心 2016年第8期2054-2061,共8页
传统模糊系统建模方法本质上是一种单视角学习模式,面向适合多视角处理的场景时,它们通常只能将每一视角割裂开来进行独立建模,这导致其所得系统泛化性能往往不令人满意。针对此缺陷,该文探讨具备多视角学习能力的模糊系统建模方法。为... 传统模糊系统建模方法本质上是一种单视角学习模式,面向适合多视角处理的场景时,它们通常只能将每一视角割裂开来进行独立建模,这导致其所得系统泛化性能往往不令人满意。针对此缺陷,该文探讨具备多视角学习能力的模糊系统建模方法。为此,基于经典的L2型TSK模糊系统,通过引入具备多视角学习能力的协同学习项,该文提出了核心的多视角TSK型模糊系统(MV-TSK-FS)建模方法。MV-TSK-FS不仅能有效地利用各视角不同特征构成的独立样本信息,还能充分地利用各视角间由于相互关联而存在内在信息,以最终达到提高系统泛化性能的效果。在模拟数据集与真实数据集上的实验结果验证了较之于传统单视角模糊建模方法该多视角模糊系统有着更好的泛化性和适用性。 展开更多
关键词 多视角学习 协同学习 模糊建模 tsk型模糊系统
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部