Immature embryos of rice varieties "Xiushui11" and "Chunjiang 11" precultured for 4d were infected and transformed by Agrobacterium tumefaciens strain EHA101/pExT7 (containing the spider insecticid...Immature embryos of rice varieties "Xiushui11" and "Chunjiang 11" precultured for 4d were infected and transformed by Agrobacterium tumefaciens strain EHA101/pExT7 (containing the spider insecticidal gene). The resistant cant were transferred onto the differentiation medium and plants were regenerated. The transformation frequency reached 56%-72% measured as numbers of Geneticin (G418)-resistant calli produced and 36%-60% measured as numbers of transgenic plants regenerated, respectively. PCR and Southern blot analysis of transgenic plants confirmed that the T-DNA had been integrated into the rice genome. Insect bioassays using T1 transgenic plants indicated that the mortality of the leaffolder (Cnaphalocrasis medinalis) after 7d of leaf feeding reached 38%-61% and the corrected mortality of the striped stem borer (Chilo suppressalis) after 7d of leaf feeding reached 16%-75%. The insect bioassay results demonstrated that the transgenic plants expressing the spider insecticidal protein conferred enhanced resistance to these pests.展开更多
A case of Meropenem as a novel antibacterial agent to suppress and eliminate Agrobacterium tumefaciens in the Agrobacterium-mediated transformation of orchid protocorm-like bodies (PLBs) has been reported in this ar...A case of Meropenem as a novel antibacterial agent to suppress and eliminate Agrobacterium tumefaciens in the Agrobacterium-mediated transformation of orchid protocorm-like bodies (PLBs) has been reported in this article. The in vitro activities of meropenem and four comparator antibacterial agents against three Agrobacterium tumefaciens strains, LBA4404, EHA101, and GV3101, were assessed. In addition, the effect of meropenem on the growth of Dendrobium phalaenopsis PLBs was determined. Compared with other commonly used antibiotics (including ampicillin, carbenicillin, cefotaxime, and cefoperazone), meropenem showed the highest activity in suppressing all tested A. tumefaciens strains (minimum inhibitory concentration [MIC] 〈 0.5 mg L^-1, which is equal to minimum bactericidal concentration [MBC]). Meropenem, at all tested concentrations, except for 10 mg L^-1 concentration, had little negative effect on the growth of orchid tissues. The A. tumefaciens strain EHA101 in genetic transformation with vector plG121Hm in infected PLBs of the orchid was visually undetectable after a two-month subculture in 1/2 MS medium with 50 mg L^-1 meropenem and 25 mg L^-1 hygromacin. The expression and incorporation of the transgenes were confirmed by GUS histochemical assay and PCR analysis. Meropenem may be an alternative antibiotic for the effective suppression of A. tumefaciens in genetic transformation.展开更多
Wheat, one of the most important food crops, has been extensively studied with respects to plant regeneration and transformation employing the immature embryos as recipient tissues. However, the transformed tissues of...Wheat, one of the most important food crops, has been extensively studied with respects to plant regeneration and transformation employing the immature embryos as recipient tissues. However, the transformed tissues often become severely necrotic after co-cultivation with Agrobacterium, which is one of the major obstacles in gene delivery. In this study, wheat varieties CB037, Kenong 199, Xinchun 9, Lunxuan 987, and Shi 4185 showed desirable culture potential or high infection ability in Agrobacterium-mediated transformation. Similarly, optimal regeneration conditions were determined by testing their ability to inhibit the cell necrosis and cell death phenotype. Two auxins of 2,4-dichlorophenoxyacetic acid (2,4-D) and 3,6-dichloro-o-anisic acid (dicamba) were evaluated for highly significant effect on both callus and plantlet production, although they were genotype-dependent in wheat. Substitution of 2,4-D by dicamba enhanced the growth and regeneration ability of callus from the immature embryos of most genotypes tested. The callus growth state couldn’t be modified by adding antioxidants such as ascorbic acid, cysteine, and silver nitrate or organic additives such as thiamine HCl and asparagine to the media. On the contrary, the best tissue statement and plant regeneration was achieved by employing the media containing the simplest MS (Murashige and Skoog) components and dicamba without organic components and vitamins. Thereby, our results are thought to inhibit wheat cell necrosis effectively and suggested to be used for more wheat genotypes.展开更多
Abstract: The homodimeric hemoglobin gene (VHb), the trans-zeatin synthetase gene (tzs), the modified 5-enolpyruvylshikimate-3-phosphate synthase gene (EPSPS), a selectable marker gene (hpt), and a reporter gene (gus)...Abstract: The homodimeric hemoglobin gene (VHb), the trans-zeatin synthetase gene (tzs), the modified 5-enolpyruvylshikimate-3-phosphate synthase gene (EPSPS), a selectable marker gene (hpt), and a reporter gene (gus), as linked expression cassettes, were stacked into the T-DNA region of a binary vector and introduced simultaneously into immature embryos of the rice (Oryza sativa L.) varieties Xiushui-11, Qiufeng, Youfeng, and Hanfeng by Agrobacterium tumefaciens. A total of 1 153 transgenic lines was obtained through selection for hygromycin B resistance. Approximately 90.2% of the transgenic lines harbored all the transgenes. Integration of multiple transgenes occurred at one to three genetic loci. Expression analysis revealed that the transgenes were coexpressed and inherited in a simple Mendelian fashion in transgenic plants and the frequency of coexpression was approximately 85%. On the basis of the cointegration and coexpression of the transgenes, most transgenic families were considered to be useful in a breeding program.展开更多
The production of transgenic sweetpotato (cv.Xushu 18) plants exhibiting enhanced salt tolerance using salt overly sensitive (SOS) genes was achieved through Agrobacterium tumefaciens-mediated transformation.A.tum...The production of transgenic sweetpotato (cv.Xushu 18) plants exhibiting enhanced salt tolerance using salt overly sensitive (SOS) genes was achieved through Agrobacterium tumefaciens-mediated transformation.A.tumefaciens strain EHA105 harbors a binary vector pCAMBIA3301 with SOS genes (SOS1,SOS2 and SOS3) and bar gene.Selection culture was conducted using 0.3 mg L^-1 phosphinothricin (PPT).A total of 40 plants were produced from the inoculated 170 cell aggregates via somatic embryogenesis.PCR analysis showed that 37 of the 40 regenerated plants were transgenic plants.The in vitro assay demonstrated that superoxide dismutase (SOD) and proline were significantly more accumulated and malonaldehyde (MDA) was significantly less accumulated in 21 transgenic plants than in control plants when they were exposed to 86 mmol L^-1 NaCl.Salt tolerance of these 21 plants was further evaluated with Hoagland solution containing 0,51,86,and 120 mmol L^-1 NaCl in the greenhouse.The results indicated that 6 of them had significantly better growth and rooting ability than the remaining 15 transgenic plants and control plants.Expression of SOS genes in the 6 salt-tolerant transgenic plants was demonstrated by RT-PCR analysis.This study provides an alternative approach for improving salt tolerance of sweetpotato.展开更多
Artemisia annua L. produces small amounts of the sesquiterpenoid artemisinin, which is used for treatment of malaria. A worldwide shortage of the drug has led to intense research to increase the yield of artemisinin i...Artemisia annua L. produces small amounts of the sesquiterpenoid artemisinin, which is used for treatment of malaria. A worldwide shortage of the drug has led to intense research to increase the yield of artemisinin in the plant. In order to study the regulation of expression of a key enzyme of artemisinin biosynthesis, the promoter region of the key enzyme amorpha-4,11-diene synthase (ADS) was cloned and fused with the β-glucuronidase (GUS) reporter gene. Transgenic plants of A. annua expressing this fusion were generated and studied. Transgenic plants expressing the GUS gene were used to establish the activity of the cloned promoter by a GUS activity staining procedure. GUS under the control of the ADS promoter showed specific expression in glandular trichomes. The activity of the ADS promoter varies temporally and in old tissues essentially no GUS staining could be observed. The expression pattern of GUS and ADS in aerial parts of the transgenic plant was essentially the same indicating that the cis-elements controlling glandular trichome specific expression are included in the cloned promoter. However, some cis-element(s) that control expression in root and old leaf appears to be missing in the cloned promoter. Furthermore, qPCR was used to compare the activity of the wild-type ADS promoter with that of the cloned ADS promoter. The latter promoter showed a considerably lower activity than the wild-type promoter as judged from the levels of GUS and ADS transcripts, respectively, which may be due to the removal of an enhancing cis-element from the ADS promoter. The ADS gene is specifically expressed in stalk and secretory cells of glandular trichomes of A. annua.展开更多
A method of Agrobacterium tumefaciens mediated transformation for perennial ryegrass was developed using the calli of ryegrass derived from mature enrbryos. The calli were inoculated with a disarmed A. tumefaciens str...A method of Agrobacterium tumefaciens mediated transformation for perennial ryegrass was developed using the calli of ryegrass derived from mature enrbryos. The calli were inoculated with a disarmed A. tumefaciens strain EHA105 harboring binary vector p2328. Vector p2328 contained transcription factor DREB1B and neomycin phosphotransferase (npt H) genes which were driven by promoters of rd29B and CaMV35S, respectively. The inoculated calli were selected on paromomycin- or kanamycin-containing media till the established plants being transferred to soil. Six tmnsgenic plants with DREB1B had been obtained from perennial ryegrass strain Tove. PCR and Southern-blotting showed that npt Ⅱ and DREBIB genes were integrated in perennial ryegrass genome. Stress treatment confirmed that transgenic plants with higher drought tolerance were obtained.展开更多
Southern blot analysis indicated that mtID gene (encoding mannitol-1 -phosphate dehydrogenase) and gutD gene (encoding glucitol-6-phosphate dehydrogenase) had been integrated into the rice genome mediated by Agrobacte...Southern blot analysis indicated that mtID gene (encoding mannitol-1 -phosphate dehydrogenase) and gutD gene (encoding glucitol-6-phosphate dehydrogenase) had been integrated into the rice genome mediated by Agrobacterium tumefaciens LBA4404(pBIGM). The expression of the above two genes in transgenic rice plants was demonstrated by Northern blot analysis and enzymatic activity assay. Analysis of sugar alcohol showed that transgenic rice plants could produce and accumulate mannitol and sorbitol. The salt tolerance of transgenic plants was much higher than that of their controls.展开更多
Transformation by Agrobacterium tumefaciens, an important tool in modern plant research, involves the integration of T-DNA initially present on a plasmid in agrobacteria into the genome of plant cells. The process of ...Transformation by Agrobacterium tumefaciens, an important tool in modern plant research, involves the integration of T-DNA initially present on a plasmid in agrobacteria into the genome of plant cells. The process of attachment of the agrobacteria to plant cells and the transport of T-DNA into the cell and further to the nucleus has been well described. However, the exact mechanism of integration into the host's DNA is still unclear, although several models have been proposed. During confirmation of T-DNA insertion alleles from the GABI-Kat collection of Arabidopsis thaliana mutants, we have generated about 34 000 sequences from the junctions between inserted T-DNA and adjacent genome regions. Here, we describe the evaluation of this dataset with regard to existing models for T-DNA integration. The results suggest that integration into the plant genome is mainly mediated by the endogenous plant DNA repair machinery. The observed integration events showed characteristics highly similar to those of repair sites of double- strand breaks with respect to microhomology and deletion sizes. In addition, we describe unexpected integration events, such as large deletions and inversions at the integration site that are relevant for correct interpretation of results from T-DNA insertion mutants in reverse genetics experiments.展开更多
Enhanced stem nematode resistance of transgenic sweetpotato (cv. Lizixiang) was achieved using Oryzacystatin-I (OCI) gene with Agrobacterium tumefaciens-mediated transformation. A. tumefaciens strain EHA105 harbor...Enhanced stem nematode resistance of transgenic sweetpotato (cv. Lizixiang) was achieved using Oryzacystatin-I (OCI) gene with Agrobacterium tumefaciens-mediated transformation. A. tumefaciens strain EHA105 harbors a binary vector pCAMBIA1301 with OCI gene, gusA gene and hptII gene. Selection culture was conducted using 25 mg L-1 hygromycin. A total of 1 715 plants were produced from the inoculated 1 450 cell aggregates of Lizixiang via somatic embryogenesis. GUS assay and PCR analysis of the putative transgenic plants randomly sampled showed that 90.54% of them were transgenic plants. Transgenic plants exhibited significantly enhanced resistance to stem nematodes compared to the untransformed control plants by the field evaluation with stem nematodes. Stable integration of the OCI gene into the genome of resistant transgenic plants was confirmed by Southern blot analysis, and the copy number of integrated OCI gene ranged from 1 to 4. Transgene overexpression in stem nematode-resistant plants was demonstrated by quantitative real-time PCR analysis. This study provides a way for improving stem nematode resistance in sweetpotato.展开更多
Stem segments from diseased Paulownia tomentosaXP, fortunei and leaves from healthy control were transformed with the expression vector p438PRSI via Agrobacterium tumefaciens. The p438PRSI vector contained shiva-1 gen...Stem segments from diseased Paulownia tomentosaXP, fortunei and leaves from healthy control were transformed with the expression vector p438PRSI via Agrobacterium tumefaciens. The p438PRSI vector contained shiva-1 gene, which encodes an antibacterial peptide under the control of a CaMV35S promoter. The regenerated plants from transformed explants were planted in a greenhouse and nursery. PCR and Southern blotting analysis showed that the shiva-1 gene was successfully integrated into the Paulownia genome. Transcription of the integrated shiva-1 gene was confirmed by RT-PCR. Bioassay in the green house and phytoplasma DNA-dot blotting demonstrated that resistance to Paulownia witch's broom disease (PWB) increased significantly in shiva-l-transgenic Paulownia. Further investigations indicated that higher Shiva- 1 expression correlated with fewer phytoplasma and less symptoms in diseased transgenic Paulownia. Together, our findings strongly suggest that breeding shiva-1-Paulownia is an effective strategy to control PWB disease.展开更多
文摘Immature embryos of rice varieties "Xiushui11" and "Chunjiang 11" precultured for 4d were infected and transformed by Agrobacterium tumefaciens strain EHA101/pExT7 (containing the spider insecticidal gene). The resistant cant were transferred onto the differentiation medium and plants were regenerated. The transformation frequency reached 56%-72% measured as numbers of Geneticin (G418)-resistant calli produced and 36%-60% measured as numbers of transgenic plants regenerated, respectively. PCR and Southern blot analysis of transgenic plants confirmed that the T-DNA had been integrated into the rice genome. Insect bioassays using T1 transgenic plants indicated that the mortality of the leaffolder (Cnaphalocrasis medinalis) after 7d of leaf feeding reached 38%-61% and the corrected mortality of the striped stem borer (Chilo suppressalis) after 7d of leaf feeding reached 16%-75%. The insect bioassay results demonstrated that the transgenic plants expressing the spider insecticidal protein conferred enhanced resistance to these pests.
文摘A case of Meropenem as a novel antibacterial agent to suppress and eliminate Agrobacterium tumefaciens in the Agrobacterium-mediated transformation of orchid protocorm-like bodies (PLBs) has been reported in this article. The in vitro activities of meropenem and four comparator antibacterial agents against three Agrobacterium tumefaciens strains, LBA4404, EHA101, and GV3101, were assessed. In addition, the effect of meropenem on the growth of Dendrobium phalaenopsis PLBs was determined. Compared with other commonly used antibiotics (including ampicillin, carbenicillin, cefotaxime, and cefoperazone), meropenem showed the highest activity in suppressing all tested A. tumefaciens strains (minimum inhibitory concentration [MIC] 〈 0.5 mg L^-1, which is equal to minimum bactericidal concentration [MBC]). Meropenem, at all tested concentrations, except for 10 mg L^-1 concentration, had little negative effect on the growth of orchid tissues. The A. tumefaciens strain EHA101 in genetic transformation with vector plG121Hm in infected PLBs of the orchid was visually undetectable after a two-month subculture in 1/2 MS medium with 50 mg L^-1 meropenem and 25 mg L^-1 hygromacin. The expression and incorporation of the transgenes were confirmed by GUS histochemical assay and PCR analysis. Meropenem may be an alternative antibiotic for the effective suppression of A. tumefaciens in genetic transformation.
基金supported by the National Natural Science Foundation of China (30971776)the National Transgenic Specialized Research Program of China (2008ZX08010-004)
文摘Wheat, one of the most important food crops, has been extensively studied with respects to plant regeneration and transformation employing the immature embryos as recipient tissues. However, the transformed tissues often become severely necrotic after co-cultivation with Agrobacterium, which is one of the major obstacles in gene delivery. In this study, wheat varieties CB037, Kenong 199, Xinchun 9, Lunxuan 987, and Shi 4185 showed desirable culture potential or high infection ability in Agrobacterium-mediated transformation. Similarly, optimal regeneration conditions were determined by testing their ability to inhibit the cell necrosis and cell death phenotype. Two auxins of 2,4-dichlorophenoxyacetic acid (2,4-D) and 3,6-dichloro-o-anisic acid (dicamba) were evaluated for highly significant effect on both callus and plantlet production, although they were genotype-dependent in wheat. Substitution of 2,4-D by dicamba enhanced the growth and regeneration ability of callus from the immature embryos of most genotypes tested. The callus growth state couldn’t be modified by adding antioxidants such as ascorbic acid, cysteine, and silver nitrate or organic additives such as thiamine HCl and asparagine to the media. On the contrary, the best tissue statement and plant regeneration was achieved by employing the media containing the simplest MS (Murashige and Skoog) components and dicamba without organic components and vitamins. Thereby, our results are thought to inhibit wheat cell necrosis effectively and suggested to be used for more wheat genotypes.
文摘Abstract: The homodimeric hemoglobin gene (VHb), the trans-zeatin synthetase gene (tzs), the modified 5-enolpyruvylshikimate-3-phosphate synthase gene (EPSPS), a selectable marker gene (hpt), and a reporter gene (gus), as linked expression cassettes, were stacked into the T-DNA region of a binary vector and introduced simultaneously into immature embryos of the rice (Oryza sativa L.) varieties Xiushui-11, Qiufeng, Youfeng, and Hanfeng by Agrobacterium tumefaciens. A total of 1 153 transgenic lines was obtained through selection for hygromycin B resistance. Approximately 90.2% of the transgenic lines harbored all the transgenes. Integration of multiple transgenes occurred at one to three genetic loci. Expression analysis revealed that the transgenes were coexpressed and inherited in a simple Mendelian fashion in transgenic plants and the frequency of coexpression was approximately 85%. On the basis of the cointegration and coexpression of the transgenes, most transgenic families were considered to be useful in a breeding program.
基金supported by China Agriculture Research System(Sweetpotato)the National High-Tech R&D Program of China(2009AA10Z102)the National Transgenic Plants Project of China(2009ZX08009-064B)
文摘The production of transgenic sweetpotato (cv.Xushu 18) plants exhibiting enhanced salt tolerance using salt overly sensitive (SOS) genes was achieved through Agrobacterium tumefaciens-mediated transformation.A.tumefaciens strain EHA105 harbors a binary vector pCAMBIA3301 with SOS genes (SOS1,SOS2 and SOS3) and bar gene.Selection culture was conducted using 0.3 mg L^-1 phosphinothricin (PPT).A total of 40 plants were produced from the inoculated 170 cell aggregates via somatic embryogenesis.PCR analysis showed that 37 of the 40 regenerated plants were transgenic plants.The in vitro assay demonstrated that superoxide dismutase (SOD) and proline were significantly more accumulated and malonaldehyde (MDA) was significantly less accumulated in 21 transgenic plants than in control plants when they were exposed to 86 mmol L^-1 NaCl.Salt tolerance of these 21 plants was further evaluated with Hoagland solution containing 0,51,86,and 120 mmol L^-1 NaCl in the greenhouse.The results indicated that 6 of them had significantly better growth and rooting ability than the remaining 15 transgenic plants and control plants.Expression of SOS genes in the 6 salt-tolerant transgenic plants was demonstrated by RT-PCR analysis.This study provides an alternative approach for improving salt tolerance of sweetpotato.
文摘Artemisia annua L. produces small amounts of the sesquiterpenoid artemisinin, which is used for treatment of malaria. A worldwide shortage of the drug has led to intense research to increase the yield of artemisinin in the plant. In order to study the regulation of expression of a key enzyme of artemisinin biosynthesis, the promoter region of the key enzyme amorpha-4,11-diene synthase (ADS) was cloned and fused with the β-glucuronidase (GUS) reporter gene. Transgenic plants of A. annua expressing this fusion were generated and studied. Transgenic plants expressing the GUS gene were used to establish the activity of the cloned promoter by a GUS activity staining procedure. GUS under the control of the ADS promoter showed specific expression in glandular trichomes. The activity of the ADS promoter varies temporally and in old tissues essentially no GUS staining could be observed. The expression pattern of GUS and ADS in aerial parts of the transgenic plant was essentially the same indicating that the cis-elements controlling glandular trichome specific expression are included in the cloned promoter. However, some cis-element(s) that control expression in root and old leaf appears to be missing in the cloned promoter. Furthermore, qPCR was used to compare the activity of the wild-type ADS promoter with that of the cloned ADS promoter. The latter promoter showed a considerably lower activity than the wild-type promoter as judged from the levels of GUS and ADS transcripts, respectively, which may be due to the removal of an enhancing cis-element from the ADS promoter. The ADS gene is specifically expressed in stalk and secretory cells of glandular trichomes of A. annua.
基金Supported by the National Natural Science Foundation of China(30170589)and the National Special Project for Research and Industrialization of Transgenic Plants (J-2002-B-006). Acknowledgements: We are grateful to Dr. Zhang Xiao-dong of Beijing Academy of Agricultural and Forestry Sciences for donating gene DRB1B and Agrobacterium tumefaciens EHA105. We thank Ms. Yang Hong of Chengdu Institute of Biology, Chinese Academy of Sciences, for conducting much work of tissue culture. We also thank Center for Application of Molecular Biology to International A griculture (CAMBIA), Australia for permission of use pCAMBIA2301.
文摘A method of Agrobacterium tumefaciens mediated transformation for perennial ryegrass was developed using the calli of ryegrass derived from mature enrbryos. The calli were inoculated with a disarmed A. tumefaciens strain EHA105 harboring binary vector p2328. Vector p2328 contained transcription factor DREB1B and neomycin phosphotransferase (npt H) genes which were driven by promoters of rd29B and CaMV35S, respectively. The inoculated calli were selected on paromomycin- or kanamycin-containing media till the established plants being transferred to soil. Six tmnsgenic plants with DREB1B had been obtained from perennial ryegrass strain Tove. PCR and Southern-blotting showed that npt Ⅱ and DREBIB genes were integrated in perennial ryegrass genome. Stress treatment confirmed that transgenic plants with higher drought tolerance were obtained.
文摘Southern blot analysis indicated that mtID gene (encoding mannitol-1 -phosphate dehydrogenase) and gutD gene (encoding glucitol-6-phosphate dehydrogenase) had been integrated into the rice genome mediated by Agrobacterium tumefaciens LBA4404(pBIGM). The expression of the above two genes in transgenic rice plants was demonstrated by Northern blot analysis and enzymatic activity assay. Analysis of sugar alcohol showed that transgenic rice plants could produce and accumulate mannitol and sorbitol. The salt tolerance of transgenic plants was much higher than that of their controls.
文摘Transformation by Agrobacterium tumefaciens, an important tool in modern plant research, involves the integration of T-DNA initially present on a plasmid in agrobacteria into the genome of plant cells. The process of attachment of the agrobacteria to plant cells and the transport of T-DNA into the cell and further to the nucleus has been well described. However, the exact mechanism of integration into the host's DNA is still unclear, although several models have been proposed. During confirmation of T-DNA insertion alleles from the GABI-Kat collection of Arabidopsis thaliana mutants, we have generated about 34 000 sequences from the junctions between inserted T-DNA and adjacent genome regions. Here, we describe the evaluation of this dataset with regard to existing models for T-DNA integration. The results suggest that integration into the plant genome is mainly mediated by the endogenous plant DNA repair machinery. The observed integration events showed characteristics highly similar to those of repair sites of double- strand breaks with respect to microhomology and deletion sizes. In addition, we describe unexpected integration events, such as large deletions and inversions at the integration site that are relevant for correct interpretation of results from T-DNA insertion mutants in reverse genetics experiments.
基金supported by the Earmarked Fund for Modern Agro-Industry Technology Research System(Sweetpotato), Chinathe National High-Tech R&D Pro-gram of China (2009AA10Z102)+2 种基金the National Transgenic Plants Project of China (2009ZX08009-064B)the Natinal NaturalScience Foundation of China(30871570)the Scientific Fund to Graduate Re-search and Innovation Projects of China Agricultural University (15059201-kycx09018)
文摘Enhanced stem nematode resistance of transgenic sweetpotato (cv. Lizixiang) was achieved using Oryzacystatin-I (OCI) gene with Agrobacterium tumefaciens-mediated transformation. A. tumefaciens strain EHA105 harbors a binary vector pCAMBIA1301 with OCI gene, gusA gene and hptII gene. Selection culture was conducted using 25 mg L-1 hygromycin. A total of 1 715 plants were produced from the inoculated 1 450 cell aggregates of Lizixiang via somatic embryogenesis. GUS assay and PCR analysis of the putative transgenic plants randomly sampled showed that 90.54% of them were transgenic plants. Transgenic plants exhibited significantly enhanced resistance to stem nematodes compared to the untransformed control plants by the field evaluation with stem nematodes. Stable integration of the OCI gene into the genome of resistant transgenic plants was confirmed by Southern blot analysis, and the copy number of integrated OCI gene ranged from 1 to 4. Transgene overexpression in stem nematode-resistant plants was demonstrated by quantitative real-time PCR analysis. This study provides a way for improving stem nematode resistance in sweetpotato.
基金the National Natural Science Foundation of China,the President Foundation of the Chinese Academy of Sciences
文摘Stem segments from diseased Paulownia tomentosaXP, fortunei and leaves from healthy control were transformed with the expression vector p438PRSI via Agrobacterium tumefaciens. The p438PRSI vector contained shiva-1 gene, which encodes an antibacterial peptide under the control of a CaMV35S promoter. The regenerated plants from transformed explants were planted in a greenhouse and nursery. PCR and Southern blotting analysis showed that the shiva-1 gene was successfully integrated into the Paulownia genome. Transcription of the integrated shiva-1 gene was confirmed by RT-PCR. Bioassay in the green house and phytoplasma DNA-dot blotting demonstrated that resistance to Paulownia witch's broom disease (PWB) increased significantly in shiva-l-transgenic Paulownia. Further investigations indicated that higher Shiva- 1 expression correlated with fewer phytoplasma and less symptoms in diseased transgenic Paulownia. Together, our findings strongly suggest that breeding shiva-1-Paulownia is an effective strategy to control PWB disease.