Ovarian cancer is the leading cause of death in women worldwide. Cisplatin is the core of first-line chemotherapy for patients with advanced ovarian cancer. Many patients eventually become resistant to cisplatin, dimi...Ovarian cancer is the leading cause of death in women worldwide. Cisplatin is the core of first-line chemotherapy for patients with advanced ovarian cancer. Many patients eventually become resistant to cisplatin, diminishing its therapeutic effect. MicroRNAs(miRNAs) have critical functions in diverse biological processes. Using miRNA profiling and polymerase chain reaction validation, we identified a panel of differentially expressed miRNAs and their potential targets in cisplatin-resistant SKOV3/DDP ovarian cancer cells relative to cisplatin-sensitive SKOV3 parental cells. More specifically, our results revealed significant changes in the expression of 13 of 663 miRNAs analyzed, including 11 that were up-regulated and 2 that were down-regulated in SKOV3/DDP cells with or without cisplatin treatment compared with SKOV3 cells with or without cisplatin treatment. miRNA array and mRNA array data were further analyzed using Ingenuity Pathway Analysis software. Bioinformatics analysis suggests that the genes ANKRD17, SMC1A, SUMO1, GTF2H1, and TP73, which are involved in DNA damage signaling pathways, are potential targets of miRNAs in promoting cisplatin resistance. This study highlights candidate miRNAmRNA interactions that may contribute to cisplatin resistance in ovarian cancer.展开更多
BACKGROUND Previous studies have suggested that long non-coding RNAs(lncRNA)TP73-AS1 is significantly upregulated in several cancers.However,the biological role and clinical significance of TP73-AS1 in pancreatic canc...BACKGROUND Previous studies have suggested that long non-coding RNAs(lncRNA)TP73-AS1 is significantly upregulated in several cancers.However,the biological role and clinical significance of TP73-AS1 in pancreatic cancer(PC)remain unclear.AIM To investigate the role of TP73-AS1 in the growth and metastasis of PC.METHODS The expression of lncRNA TP73-AS1,miR-128-3p,and GOLM1 in PC tissues and cells was detected by quantitative real-time polymerase chain reaction.The bioinformatics prediction software ENCORI was used to predict the putative binding sites of miR-128-3p.The regulatory roles of TP73-AS1 and miR-128-3p in cell proliferation,migration,and invasion abilities were verified by Cell Counting Kit-8,wound-healing,and transwell assays,as well as flow cytometry and Western blot analysis.The interactions among TP73-AS1,miR-128-3p,and GOLM1 were explored by bioinformatics prediction,luciferase assay,and Western blot.RESULTS The expression of TP73-AS1 and miRNA-128-3p was dysregulated in PC tissues and cells.High TP73-AS1 expression was correlated with a poor prognosis.TP73-AS1 silencing inhibited PC cell proliferation,migration,and invasion in vitro as well as suppressed tumor growth in vivo.Mechanistically,TP73-AS1 was validated to promote PC progression through GOLM1 upregulation by competitively binding to miR-128-3p.CONCLUSION Our results demonstrated that TP73-AS1 promotes PC progression by regulating the miR-128-3p/GOLM1 axis,which might provide a potential treatment strategy for patients with PC.展开更多
基金supported by grants from the National Nonprofit Institute Research Grant of CAMS (No. JK2010B24)National Basic Research Program (No. 2011CB910704)State Key Laboratory of Molecular Oncology Program (No. SKL-2009-15), P. R. China
文摘Ovarian cancer is the leading cause of death in women worldwide. Cisplatin is the core of first-line chemotherapy for patients with advanced ovarian cancer. Many patients eventually become resistant to cisplatin, diminishing its therapeutic effect. MicroRNAs(miRNAs) have critical functions in diverse biological processes. Using miRNA profiling and polymerase chain reaction validation, we identified a panel of differentially expressed miRNAs and their potential targets in cisplatin-resistant SKOV3/DDP ovarian cancer cells relative to cisplatin-sensitive SKOV3 parental cells. More specifically, our results revealed significant changes in the expression of 13 of 663 miRNAs analyzed, including 11 that were up-regulated and 2 that were down-regulated in SKOV3/DDP cells with or without cisplatin treatment compared with SKOV3 cells with or without cisplatin treatment. miRNA array and mRNA array data were further analyzed using Ingenuity Pathway Analysis software. Bioinformatics analysis suggests that the genes ANKRD17, SMC1A, SUMO1, GTF2H1, and TP73, which are involved in DNA damage signaling pathways, are potential targets of miRNAs in promoting cisplatin resistance. This study highlights candidate miRNAmRNA interactions that may contribute to cisplatin resistance in ovarian cancer.
基金National Natural Science Foundation of China,No.81974372.
文摘BACKGROUND Previous studies have suggested that long non-coding RNAs(lncRNA)TP73-AS1 is significantly upregulated in several cancers.However,the biological role and clinical significance of TP73-AS1 in pancreatic cancer(PC)remain unclear.AIM To investigate the role of TP73-AS1 in the growth and metastasis of PC.METHODS The expression of lncRNA TP73-AS1,miR-128-3p,and GOLM1 in PC tissues and cells was detected by quantitative real-time polymerase chain reaction.The bioinformatics prediction software ENCORI was used to predict the putative binding sites of miR-128-3p.The regulatory roles of TP73-AS1 and miR-128-3p in cell proliferation,migration,and invasion abilities were verified by Cell Counting Kit-8,wound-healing,and transwell assays,as well as flow cytometry and Western blot analysis.The interactions among TP73-AS1,miR-128-3p,and GOLM1 were explored by bioinformatics prediction,luciferase assay,and Western blot.RESULTS The expression of TP73-AS1 and miRNA-128-3p was dysregulated in PC tissues and cells.High TP73-AS1 expression was correlated with a poor prognosis.TP73-AS1 silencing inhibited PC cell proliferation,migration,and invasion in vitro as well as suppressed tumor growth in vivo.Mechanistically,TP73-AS1 was validated to promote PC progression through GOLM1 upregulation by competitively binding to miR-128-3p.CONCLUSION Our results demonstrated that TP73-AS1 promotes PC progression by regulating the miR-128-3p/GOLM1 axis,which might provide a potential treatment strategy for patients with PC.