This paper discusses the time-of-arrival(TOA) based indoor visible light communication(VLC) positioning system in a non-line-of-sight environment. The propagation delay is assumed to be gamma distributed. The generali...This paper discusses the time-of-arrival(TOA) based indoor visible light communication(VLC) positioning system in a non-line-of-sight environment. The propagation delay is assumed to be gamma distributed. The generalized Cramer–Rao lower bound for multipath propagation is derived as the theoretical accuracy limitation. The performance of the positioning system is affected by the shape parameter and the scale parameter of gamma distribution.The influences on positioning accuracy of multipath effects are analyzed through discussing the physical meaning of the gamma distribution parameters. It is concluded that the lower bound of positioning accuracy is attained when variance of the non-line-of-sight propagation-induced path lengths is zero. The simulation result provesthat the theoretical positioning accuracy is in the order of centimeters with the given scenario.展开更多
Caused by Non-Line-Of-Sight (NLOS) propagation effect, the non-symmetric contamination of measured Time Of Arrival (TOA) data leads to high inaccuracies of the conventional TOA based mobile location techniques. Robust...Caused by Non-Line-Of-Sight (NLOS) propagation effect, the non-symmetric contamination of measured Time Of Arrival (TOA) data leads to high inaccuracies of the conventional TOA based mobile location techniques. Robust position estimation method based on bootstrapping M-estimation and Huber estimator are proposed to mitigate the effects of NLOS propagation on the location error. Simulation results show the improvement over traditional Least-Square (LS)algorithm on location accuracy under different channel environments.展开更多
基金supported by the National Key Basic Research Program of China (973 program) under grant 2013CB32920the Natural Science Foundation of China under grant 61375083
文摘This paper discusses the time-of-arrival(TOA) based indoor visible light communication(VLC) positioning system in a non-line-of-sight environment. The propagation delay is assumed to be gamma distributed. The generalized Cramer–Rao lower bound for multipath propagation is derived as the theoretical accuracy limitation. The performance of the positioning system is affected by the shape parameter and the scale parameter of gamma distribution.The influences on positioning accuracy of multipath effects are analyzed through discussing the physical meaning of the gamma distribution parameters. It is concluded that the lower bound of positioning accuracy is attained when variance of the non-line-of-sight propagation-induced path lengths is zero. The simulation result provesthat the theoretical positioning accuracy is in the order of centimeters with the given scenario.
文摘Caused by Non-Line-Of-Sight (NLOS) propagation effect, the non-symmetric contamination of measured Time Of Arrival (TOA) data leads to high inaccuracies of the conventional TOA based mobile location techniques. Robust position estimation method based on bootstrapping M-estimation and Huber estimator are proposed to mitigate the effects of NLOS propagation on the location error. Simulation results show the improvement over traditional Least-Square (LS)algorithm on location accuracy under different channel environments.