The influence of tris(trimethylsilyl) borate (TMSB) as an electrolyte additive on lithium ion cells have been studied using Li/LiCo1/3Ni1/3Mn1/3O2 cells at a higher voltage, 4.7 V versus Li/Li+. 1 wt% TMSB can dramati...The influence of tris(trimethylsilyl) borate (TMSB) as an electrolyte additive on lithium ion cells have been studied using Li/LiCo1/3Ni1/3Mn1/3O2 cells at a higher voltage, 4.7 V versus Li/Li+. 1 wt% TMSB can dramatically reduce the capacity fading that occurs during cycling at room temperature (RT) and elevated temperature (60 degrees C). After 150 cycles at 1 C rate (1 C= 278 mAh/g), the capacity retention of Li/LiCo1/3Ni1/3Mn1/3O2 is up to near 72% in the electrolyte with TMSB added, while it is only about 35% in the baseline electrolyte. The electrochemical behaviors, the surface chemistry and structure of Li/LiCo1/3Ni1/3Mn1/3O2 cathode are characterized with charge/discharge test, linear sweep voltammetry (LSV), X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS), thermal gravimetric analyses (TGA), scanning electron microscope (SEM) and transmission electron microscopy (TEM). These analysis results reveal that the addition of TMSB is able to protectively modify the electrode CEI film in a manner that suppresses electrolyte decomposition and degradation of electrode surface structure, even though at both a higher voltage of 4.7 V and an elevated temperature of 60 degrees C. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.展开更多
The formation of new and functional cardiomyocytes requires a 3-step process:dedifferentiation,proliferation,and redifferentiation,but the critical genes required for efficient dedifferentiation,proliferation,and redi...The formation of new and functional cardiomyocytes requires a 3-step process:dedifferentiation,proliferation,and redifferentiation,but the critical genes required for efficient dedifferentiation,proliferation,and redifferentiation remain unknown.In our study,a circular trajectory using single-nucleus RNA sequencing of the pericentriolar material 1 positive(PCM1^(+))cardiomyocyte nuclei from hearts 1 and 3 days after surgery-induced myocardial infarction(MI)on postnatal Day 1 was reconstructed and demonstrated that actin remodeling contributed to the dedifferentiation,proliferation,and redifferentiation of cardiomyocytes after injury.We identified four top actin-remodeling regulators,namely Tmsb4x,Tmsb10,Dmd,and Ctnna3,which we collectively referred to as 2D2P.Transiently expressed changes of 2D2P,using a polycistronic non-integrating lentivirus driven by Tnnt2(cardiac-specific troponin T)promoters(Tnnt2-2D2P-NIL),efficiently induced transiently proliferative activation and actin remodeling in postnatal Day 7 cardiomyocytes and adult hearts.Furthermore,the intramyocardial delivery of Tnnt2-2D2P-NIL resulted in a sustained improvement in cardiac function without ventricular dilatation,thickened septum,or fatal arrhythmia for at least 4 months.In conclusion,this study highlights the importance of actin remodeling in cardiac regeneration and provides a foundation for new gene-cocktail-therapy approaches to improve cardiac repair and treat heart failure using a novel transient and cardiomyocyte-specific viral construct.展开更多
Primary central nervous system lymphoma(PCNSL)is an uncommon non-Hodgkin’s lymphoma with poor prognosis.This study aimed to depict the genetic landscape of Chinese PCNSLs.Whole-genome sequencing was performed on 68 n...Primary central nervous system lymphoma(PCNSL)is an uncommon non-Hodgkin’s lymphoma with poor prognosis.This study aimed to depict the genetic landscape of Chinese PCNSLs.Whole-genome sequencing was performed on 68 newly diagnosed Chinese PCNSL samples,whose genomic characteristics and clinicopathologic features were also analyzed.Structural variations were identified in all patients with a mean of 349,which did not significantly influence prognosis.Copy loss occurred in all samples,while gains were detected in 77.9%of the samples.The high level of copy number variations was significantly associated with poor progression-free survival(PFS)and overall survival(OS).A total of 263 genes mutated in coding regions were identified,including 6 newly discovered genes(ROBO2,KMT2C,CXCR4,MYOM2,BCLAF1,and NRXN3)detected in≥10%of the cases.CD79B mutation was significantly associated with lower PFS,TMSB4X mutation and high expression of TMSB4X protein was associated with lower OS.A prognostic risk scoring system was also established for PCNSL,which included Karnofsky performance status and six mutated genes(BRD4,EBF1,BTG1,CCND3,STAG2,and TMSB4X).Collectively,this study comprehensively reveals the genomic landscape of newly diagnosed Chinese PCNSLs,thereby enriching the present understanding of the genetic mechanisms of PCNSL.展开更多
文摘The influence of tris(trimethylsilyl) borate (TMSB) as an electrolyte additive on lithium ion cells have been studied using Li/LiCo1/3Ni1/3Mn1/3O2 cells at a higher voltage, 4.7 V versus Li/Li+. 1 wt% TMSB can dramatically reduce the capacity fading that occurs during cycling at room temperature (RT) and elevated temperature (60 degrees C). After 150 cycles at 1 C rate (1 C= 278 mAh/g), the capacity retention of Li/LiCo1/3Ni1/3Mn1/3O2 is up to near 72% in the electrolyte with TMSB added, while it is only about 35% in the baseline electrolyte. The electrochemical behaviors, the surface chemistry and structure of Li/LiCo1/3Ni1/3Mn1/3O2 cathode are characterized with charge/discharge test, linear sweep voltammetry (LSV), X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS), thermal gravimetric analyses (TGA), scanning electron microscope (SEM) and transmission electron microscopy (TEM). These analysis results reveal that the addition of TMSB is able to protectively modify the electrode CEI film in a manner that suppresses electrolyte decomposition and degradation of electrode surface structure, even though at both a higher voltage of 4.7 V and an elevated temperature of 60 degrees C. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
基金supported by the grant to Chunyu Zeng from the National Key R&D Program of China(2022YFA1104500)the National Natural Science Foundation of China(82200307)the grant to Chunyu Zeng from the National Natural Science Foundation of China(81930008).
文摘The formation of new and functional cardiomyocytes requires a 3-step process:dedifferentiation,proliferation,and redifferentiation,but the critical genes required for efficient dedifferentiation,proliferation,and redifferentiation remain unknown.In our study,a circular trajectory using single-nucleus RNA sequencing of the pericentriolar material 1 positive(PCM1^(+))cardiomyocyte nuclei from hearts 1 and 3 days after surgery-induced myocardial infarction(MI)on postnatal Day 1 was reconstructed and demonstrated that actin remodeling contributed to the dedifferentiation,proliferation,and redifferentiation of cardiomyocytes after injury.We identified four top actin-remodeling regulators,namely Tmsb4x,Tmsb10,Dmd,and Ctnna3,which we collectively referred to as 2D2P.Transiently expressed changes of 2D2P,using a polycistronic non-integrating lentivirus driven by Tnnt2(cardiac-specific troponin T)promoters(Tnnt2-2D2P-NIL),efficiently induced transiently proliferative activation and actin remodeling in postnatal Day 7 cardiomyocytes and adult hearts.Furthermore,the intramyocardial delivery of Tnnt2-2D2P-NIL resulted in a sustained improvement in cardiac function without ventricular dilatation,thickened septum,or fatal arrhythmia for at least 4 months.In conclusion,this study highlights the importance of actin remodeling in cardiac regeneration and provides a foundation for new gene-cocktail-therapy approaches to improve cardiac repair and treat heart failure using a novel transient and cardiomyocyte-specific viral construct.
基金supported by funds from the Translational Research Grant of National Clinical Research Center for Hematologic Disease (No.2020ZKZC01)the National Natural Science Foundation of China (Nos.81830006,82170219,and 81800188)the Lymphoma Research Fund of China Anti-Cancer Association.
文摘Primary central nervous system lymphoma(PCNSL)is an uncommon non-Hodgkin’s lymphoma with poor prognosis.This study aimed to depict the genetic landscape of Chinese PCNSLs.Whole-genome sequencing was performed on 68 newly diagnosed Chinese PCNSL samples,whose genomic characteristics and clinicopathologic features were also analyzed.Structural variations were identified in all patients with a mean of 349,which did not significantly influence prognosis.Copy loss occurred in all samples,while gains were detected in 77.9%of the samples.The high level of copy number variations was significantly associated with poor progression-free survival(PFS)and overall survival(OS).A total of 263 genes mutated in coding regions were identified,including 6 newly discovered genes(ROBO2,KMT2C,CXCR4,MYOM2,BCLAF1,and NRXN3)detected in≥10%of the cases.CD79B mutation was significantly associated with lower PFS,TMSB4X mutation and high expression of TMSB4X protein was associated with lower OS.A prognostic risk scoring system was also established for PCNSL,which included Karnofsky performance status and six mutated genes(BRD4,EBF1,BTG1,CCND3,STAG2,and TMSB4X).Collectively,this study comprehensively reveals the genomic landscape of newly diagnosed Chinese PCNSLs,thereby enriching the present understanding of the genetic mechanisms of PCNSL.