Cerebral ischemia is a serious disease that triggers sequential pathological mechanisms, leading to significant morbidity and mortality. Although most studies to date have typically focused on the lysosome, a single o...Cerebral ischemia is a serious disease that triggers sequential pathological mechanisms, leading to significant morbidity and mortality. Although most studies to date have typically focused on the lysosome, a single organelle, current evidence supports that the function of lysosomes cannot be separated from that of the endolysosomal system as a whole. The associated membrane fusion functions of this system play a crucial role in the biodegradation of cerebral ischemia-related products. Here, we review the regulation of and the changes that occur in the endolysosomal system after cerebral ischemia, focusing on the latest research progress on membrane fusion function. Numerous proteins, including N-ethylmaleimide-sensitive factor and lysosomal potassium channel transmembrane protein 175, regulate the function of this system. However, these proteins are abnormally expressed after cerebral ischemic injury, which disrupts the normal fusion function of membranes within the endolysosomal system and that between autophagosomes and lysosomes. This results in impaired “maturation” of the endolysosomal system and the collapse of energy metabolism balance and protein homeostasis maintained by the autophagy-lysosomal pathway. Autophagy is the final step in the endolysosomal pathway and contributes to maintaining the dynamic balance of the system. The process of autophagosome-lysosome fusion is a necessary part of autophagy and plays a crucial role in maintaining energy homeostasis and clearing aging proteins. We believe that, in cerebral ischemic injury, the endolysosomal system should be considered as a whole rather than focusing on the lysosome. Understanding how this dynamic system is regulated will provide new ideas for the treatment of cerebral ischemia.展开更多
帕金森病(Parkinson’s disease,PD)是一种复杂的神经退行性疾病,以运动障碍和非运动症状为特征。虽然以多巴胺为基础的疗法在疾病的早期阶段能有效地对抗症状,但缺乏神经保护药物意味着疾病仍在继续发展。PD病人迫切需要新的疾病修饰...帕金森病(Parkinson’s disease,PD)是一种复杂的神经退行性疾病,以运动障碍和非运动症状为特征。虽然以多巴胺为基础的疗法在疾病的早期阶段能有效地对抗症状,但缺乏神经保护药物意味着疾病仍在继续发展。PD病人迫切需要新的疾病修饰疗法和新的治疗策略。遗传学研究表明,罕见和常见的基因变异都会导致PD的发生和发展。跨膜蛋白175(transmembrane protein 175,TMEM175)是来自溶酶体的PD风险基因之一,编码一种具有新型结构的溶酶体钾通道蛋白质,参与维持溶酶体膜电位和pH的稳定性。随着对TMEM175的了解,多项研究证实TMEM175的缺陷能够导致溶酶体功能障碍,诱导神经元α-突触核蛋白(α-synuclein)的病理性聚集,促进帕金森病发生。鉴于溶酶体TMEM175通道蛋白的重要功能,TMEM175基因可能是帕金森病及其他神经退行性疾病治疗的潜在靶点。本文综述了溶酶体TMEM175基因的结构及功能,重点阐述了其作为溶酶体内稳态调节因子通过影响溶酶体的功能参与PD发生发展的过程,并对其研究进行了展望。以TMEM175为靶标,筛选具有保持TMEM175的活性状态或增强其表达的药物可能具有改善PD病人病情的效果,但TMEM175如何通过保持其通道的开放和闭合状态之间的平衡来调节溶酶体的离子稳态,具体机制尚需要进一步研究探讨。未来对该离子通道蛋白质的进一步研究将为靶向PD治疗带来新的策略和思路,为在PD的诊断与治疗中奠定TMEM175的靶标分子地位提供支持。展开更多
基金supported the National Natural Science Foundation of China,No. 81970760 (to YT)the Natural Science Foundation of Liaoning Province,No. 2021-MS-201 (to YX)+1 种基金the 345 Talent Project of Shengjing Hospital of China Medical University,No. M0370 (to YT)the 345 Talent Project of Shengjing Hospital of China Medical University,No. M0395 (to YX)。
文摘Cerebral ischemia is a serious disease that triggers sequential pathological mechanisms, leading to significant morbidity and mortality. Although most studies to date have typically focused on the lysosome, a single organelle, current evidence supports that the function of lysosomes cannot be separated from that of the endolysosomal system as a whole. The associated membrane fusion functions of this system play a crucial role in the biodegradation of cerebral ischemia-related products. Here, we review the regulation of and the changes that occur in the endolysosomal system after cerebral ischemia, focusing on the latest research progress on membrane fusion function. Numerous proteins, including N-ethylmaleimide-sensitive factor and lysosomal potassium channel transmembrane protein 175, regulate the function of this system. However, these proteins are abnormally expressed after cerebral ischemic injury, which disrupts the normal fusion function of membranes within the endolysosomal system and that between autophagosomes and lysosomes. This results in impaired “maturation” of the endolysosomal system and the collapse of energy metabolism balance and protein homeostasis maintained by the autophagy-lysosomal pathway. Autophagy is the final step in the endolysosomal pathway and contributes to maintaining the dynamic balance of the system. The process of autophagosome-lysosome fusion is a necessary part of autophagy and plays a crucial role in maintaining energy homeostasis and clearing aging proteins. We believe that, in cerebral ischemic injury, the endolysosomal system should be considered as a whole rather than focusing on the lysosome. Understanding how this dynamic system is regulated will provide new ideas for the treatment of cerebral ischemia.
文摘帕金森病(Parkinson’s disease,PD)是一种复杂的神经退行性疾病,以运动障碍和非运动症状为特征。虽然以多巴胺为基础的疗法在疾病的早期阶段能有效地对抗症状,但缺乏神经保护药物意味着疾病仍在继续发展。PD病人迫切需要新的疾病修饰疗法和新的治疗策略。遗传学研究表明,罕见和常见的基因变异都会导致PD的发生和发展。跨膜蛋白175(transmembrane protein 175,TMEM175)是来自溶酶体的PD风险基因之一,编码一种具有新型结构的溶酶体钾通道蛋白质,参与维持溶酶体膜电位和pH的稳定性。随着对TMEM175的了解,多项研究证实TMEM175的缺陷能够导致溶酶体功能障碍,诱导神经元α-突触核蛋白(α-synuclein)的病理性聚集,促进帕金森病发生。鉴于溶酶体TMEM175通道蛋白的重要功能,TMEM175基因可能是帕金森病及其他神经退行性疾病治疗的潜在靶点。本文综述了溶酶体TMEM175基因的结构及功能,重点阐述了其作为溶酶体内稳态调节因子通过影响溶酶体的功能参与PD发生发展的过程,并对其研究进行了展望。以TMEM175为靶标,筛选具有保持TMEM175的活性状态或增强其表达的药物可能具有改善PD病人病情的效果,但TMEM175如何通过保持其通道的开放和闭合状态之间的平衡来调节溶酶体的离子稳态,具体机制尚需要进一步研究探讨。未来对该离子通道蛋白质的进一步研究将为靶向PD治疗带来新的策略和思路,为在PD的诊断与治疗中奠定TMEM175的靶标分子地位提供支持。