The quality or structure of a wheat population is significantly affected by the compositions of tillers. Little has been known about the physiological basis for the differences of productive capacity among tillers. Tw...The quality or structure of a wheat population is significantly affected by the compositions of tillers. Little has been known about the physiological basis for the differences of productive capacity among tillers. Two winter wheat cultivars, Shannong 15(SN15) and Shannong 8355(SN8355), were used to investigate the differences of productive capacity among tillers and analyze the physiological mechanisms that determine the superior tiller group. Low-position tillers(early initiated tillers) had a higher yield per spike than high-position tillers(late initiated tillers) in both cultivars, which was due to their more grain number per spike, more fertile spikelet per spike, less sterile spikelet per spike and higher grain weight. According to cluster analysis, tillers of SN15 were classified into 2 groups: superior tiller group including main stem(0), the first primary tiller(I) and the second primary tiller(II); and inferior tiller group including the third primary tiller(III) and the first secondary tiller(I-p). Tillers of SN8355 were classified into 3 groups: superior tiller group(0 and I), intermediate tiller group(II and III) and inferior tiller group(I-p). In comparison with other tiller groups, the superior tiller group had higher photosynthetic rate of flag leaves, higher antioxidant enzyme(SOD, POD and CAT) activities and lower levels of lipid peroxidation in leaves, higher grain filling rate in both superior and inferior grains during grain filling, higher single-stem biological yield and larger single-stem economic coefficient. Correlation analysis showed that yield per spike was positively and significantly correlated with the flag leaf photosynthetic rate, grain filling rate, the antioxidant enzyme activities and soluble protein content(except for SN15 at 5 days post-anthesis(DPA)) of flag leaf, the single-stem biological yield, and the single-stem economic coefficient. Remarkable negative correlation was also found between yield per spike a展开更多
以10种不同基因型冬小麦为材料,采用田间再裂区设计,研究了不同氮肥用量(0,105 kg N/hm2)与锌铁用量(Zn:0,6.8 kg/hm2;Fe:0,12.1 kg/hm2)对冬小麦幼苗(返青期)生长及锌铁吸收的影响。结果表明,施氮对10种基因型冬小麦的生物量、分蘖数...以10种不同基因型冬小麦为材料,采用田间再裂区设计,研究了不同氮肥用量(0,105 kg N/hm2)与锌铁用量(Zn:0,6.8 kg/hm2;Fe:0,12.1 kg/hm2)对冬小麦幼苗(返青期)生长及锌铁吸收的影响。结果表明,施氮对10种基因型冬小麦的生物量、分蘖数和叶绿素SPAD值均有显著影响,增幅分别达到15.8%,14.7%,4.6%;施用锌铁肥后生物量增加8.0%,但分蘖数减少5.8%,而对叶绿素SPAD值几乎无影响;10种不同基因型小麦植株的长势有较大差异。施用氮肥后,显著提高了各基因型小麦植株的锌含量与锌携出量,平均提高7.6%和22.9%,而小麦植株铁的含量降低6.4%,但携出量提高7.2%;施用锌铁肥显著增加了小麦的锌含量和携出量,增幅分别11.9%和19.2%,但对铁的含量和携出量影响不显著。10种不同基因型小麦植株锌铁携出量存在一定差异,吸收值较高的三种基因型分别为绵阳31、陕优225、陕优253。展开更多
The wide-precision planting pattern has become widely used in the North China Plain as a practice for increasing wheat yield.However,the effects of tilled ng developme nt and light tran smissi on within can opy on whe...The wide-precision planting pattern has become widely used in the North China Plain as a practice for increasing wheat yield.However,the effects of tilled ng developme nt and light tran smissi on within can opy on wheat yield un der differe nt sowi ng widths have not bee n clearly described.Therefore,a two-year experime nt was con ducted,in cludi ng four different seeding widths(6 cm,W6;8 cm,W8;10 cm,W10;12 cm,W12)and the traditional planting pattern with seeding width of 4 cm(W4).The results indicated mainly positive effects by the reduced intraspecific competition,specifically all three yield components of W6 and W8 were higher than those for W4.The configurations with more than 10-cm seeding width were mainly affected by the negative effect of a relative homogeneous canopy,leading to the weakened light transmission,leaf senescence,and reduced grain number per spike.Finally,the yields of W6 and W8 were significantly higher than that of W4,whereas the yield in W12 was lower(though not significantly)than W4.In wheat production,therefore,the appropriate seeding width of 6-8 cm is recommended for farmers,whereas the too wide seeding width,with more than 10 cm,should be avoided.展开更多
Two japonica rice varieties, Longjing 20 (more tillers and curved panicle type, MCP) and Longjing 21 (few tillers and half erect panicle type, FEP), were used to study the effects of row-spacing on canopy structur...Two japonica rice varieties, Longjing 20 (more tillers and curved panicle type, MCP) and Longjing 21 (few tillers and half erect panicle type, FEP), were used to study the effects of row-spacing on canopy structure, morphological characteristics and yield. The results showed that the percentage of productive tiller reduced first, and increased afterwards as row-spacing increasing. The relationship between row spacing and the percentage of productive tiller fitted a quadratic regression. The effects of row spacing on leaf area index (LAI) at later tillering stage and the highest stem number per square meter also followed a quadratic regression relationship with increasing first and then reducing. The effects of row-spacing on primary branch were larger than the secondary branch in Longjing 20. However, the trend in Longjing 21 was opposite. The relationship between row spacing and seed setting rate of the secondary branch or panicle was negatively correlated. An extreme significant negative correlation was obtained between seed setting rate of secondary branch in Longjing 20. There was no significant positive correlation between row-spacing and yield in Longjing 20 (R2=0.68). However, the negative correlation between row-spacing and yield of Longjing 21 was extremely significant (R2=–0.96**). The canopy structure of MCP was more sensitive to row-spacing. The positive correlation between row spacing and the length of the flag leaf (R2=0.89**), the width of the flag leaf (R2=0.85*), the length of the last internode (R2=0.85*), the length of the last 2nd internode (R2=0.96**) or the length of the panicle (R2=0.91**) was significant or extremely significant in Longjing 20, but not in Longjing 21. The wider row-spacing promoted the accumulation of the dry matter of panicle, stem and leaf and the yield formation in MCP. The best row-spacing in Longjing 20 was 30 cm. For Longjing 21, the narrower row-spacing was better. The best row-spacing of it was 21 cm. Th展开更多
基金supported by the National Natural Science Foundation of China (31271661)the National Basic Research Program of China (973, 2009CB118602)+1 种基金the Special Fund for Agro-Scientific Research in the Public Interest of China (201203100, 201203029)the National Science and Technology Support Program of China (2012BAD04B05)
文摘The quality or structure of a wheat population is significantly affected by the compositions of tillers. Little has been known about the physiological basis for the differences of productive capacity among tillers. Two winter wheat cultivars, Shannong 15(SN15) and Shannong 8355(SN8355), were used to investigate the differences of productive capacity among tillers and analyze the physiological mechanisms that determine the superior tiller group. Low-position tillers(early initiated tillers) had a higher yield per spike than high-position tillers(late initiated tillers) in both cultivars, which was due to their more grain number per spike, more fertile spikelet per spike, less sterile spikelet per spike and higher grain weight. According to cluster analysis, tillers of SN15 were classified into 2 groups: superior tiller group including main stem(0), the first primary tiller(I) and the second primary tiller(II); and inferior tiller group including the third primary tiller(III) and the first secondary tiller(I-p). Tillers of SN8355 were classified into 3 groups: superior tiller group(0 and I), intermediate tiller group(II and III) and inferior tiller group(I-p). In comparison with other tiller groups, the superior tiller group had higher photosynthetic rate of flag leaves, higher antioxidant enzyme(SOD, POD and CAT) activities and lower levels of lipid peroxidation in leaves, higher grain filling rate in both superior and inferior grains during grain filling, higher single-stem biological yield and larger single-stem economic coefficient. Correlation analysis showed that yield per spike was positively and significantly correlated with the flag leaf photosynthetic rate, grain filling rate, the antioxidant enzyme activities and soluble protein content(except for SN15 at 5 days post-anthesis(DPA)) of flag leaf, the single-stem biological yield, and the single-stem economic coefficient. Remarkable negative correlation was also found between yield per spike a
文摘以10种不同基因型冬小麦为材料,采用田间再裂区设计,研究了不同氮肥用量(0,105 kg N/hm2)与锌铁用量(Zn:0,6.8 kg/hm2;Fe:0,12.1 kg/hm2)对冬小麦幼苗(返青期)生长及锌铁吸收的影响。结果表明,施氮对10种基因型冬小麦的生物量、分蘖数和叶绿素SPAD值均有显著影响,增幅分别达到15.8%,14.7%,4.6%;施用锌铁肥后生物量增加8.0%,但分蘖数减少5.8%,而对叶绿素SPAD值几乎无影响;10种不同基因型小麦植株的长势有较大差异。施用氮肥后,显著提高了各基因型小麦植株的锌含量与锌携出量,平均提高7.6%和22.9%,而小麦植株铁的含量降低6.4%,但携出量提高7.2%;施用锌铁肥显著增加了小麦的锌含量和携出量,增幅分别11.9%和19.2%,但对铁的含量和携出量影响不显著。10种不同基因型小麦植株锌铁携出量存在一定差异,吸收值较高的三种基因型分别为绵阳31、陕优225、陕优253。
基金This work was supported by the Special Fund for Agroscientific Research in the Public Interest,China(201503130).
文摘The wide-precision planting pattern has become widely used in the North China Plain as a practice for increasing wheat yield.However,the effects of tilled ng developme nt and light tran smissi on within can opy on wheat yield un der differe nt sowi ng widths have not bee n clearly described.Therefore,a two-year experime nt was con ducted,in cludi ng four different seeding widths(6 cm,W6;8 cm,W8;10 cm,W10;12 cm,W12)and the traditional planting pattern with seeding width of 4 cm(W4).The results indicated mainly positive effects by the reduced intraspecific competition,specifically all three yield components of W6 and W8 were higher than those for W4.The configurations with more than 10-cm seeding width were mainly affected by the negative effect of a relative homogeneous canopy,leading to the weakened light transmission,leaf senescence,and reduced grain number per spike.Finally,the yields of W6 and W8 were significantly higher than that of W4,whereas the yield in W12 was lower(though not significantly)than W4.In wheat production,therefore,the appropriate seeding width of 6-8 cm is recommended for farmers,whereas the too wide seeding width,with more than 10 cm,should be avoided.
基金Supported by the National Key Technology R&D Program (2007BAD65B01-4)Science and Technology Development Plan of Heilongjiang Province in China (GB06B104-1-5)Key Technology R&D Program of Heilongjiang Province in China (GA09B102-3)
文摘Two japonica rice varieties, Longjing 20 (more tillers and curved panicle type, MCP) and Longjing 21 (few tillers and half erect panicle type, FEP), were used to study the effects of row-spacing on canopy structure, morphological characteristics and yield. The results showed that the percentage of productive tiller reduced first, and increased afterwards as row-spacing increasing. The relationship between row spacing and the percentage of productive tiller fitted a quadratic regression. The effects of row spacing on leaf area index (LAI) at later tillering stage and the highest stem number per square meter also followed a quadratic regression relationship with increasing first and then reducing. The effects of row-spacing on primary branch were larger than the secondary branch in Longjing 20. However, the trend in Longjing 21 was opposite. The relationship between row spacing and seed setting rate of the secondary branch or panicle was negatively correlated. An extreme significant negative correlation was obtained between seed setting rate of secondary branch in Longjing 20. There was no significant positive correlation between row-spacing and yield in Longjing 20 (R2=0.68). However, the negative correlation between row-spacing and yield of Longjing 21 was extremely significant (R2=–0.96**). The canopy structure of MCP was more sensitive to row-spacing. The positive correlation between row spacing and the length of the flag leaf (R2=0.89**), the width of the flag leaf (R2=0.85*), the length of the last internode (R2=0.85*), the length of the last 2nd internode (R2=0.96**) or the length of the panicle (R2=0.91**) was significant or extremely significant in Longjing 20, but not in Longjing 21. The wider row-spacing promoted the accumulation of the dry matter of panicle, stem and leaf and the yield formation in MCP. The best row-spacing in Longjing 20 was 30 cm. For Longjing 21, the narrower row-spacing was better. The best row-spacing of it was 21 cm. Th