Utilizing SHS Reactive Flame Spraying (RFS) technology, TiC-TiB2-Al2O3 multiphase ceramics coatings were produced on steel substrate. Phase constituents and microstructure of the ceramic coatings were analyzed. The pr...Utilizing SHS Reactive Flame Spraying (RFS) technology, TiC-TiB2-Al2O3 multiphase ceramics coatings were produced on steel substrate. Phase constituents and microstructure of the ceramic coatings were analyzed. The procedure of chemical combustion and structure transformation, reactive mechanism, and solidifying behavior during spaying were emphasized. Reactants which influenced on SHS spraying was discussed. SHS reactive spraying processes were studied. Mechanical properties of the coatings were tested.展开更多
Steel matrix composite coatings locally reinforced with in situ TiC-TiB2 particulates were prepared by argon arc cladding(AAC) with different mass fractions of Fe and Ti+B4C powders as the binding materials. The micro...Steel matrix composite coatings locally reinforced with in situ TiC-TiB2 particulates were prepared by argon arc cladding(AAC) with different mass fractions of Fe and Ti+B4C powders as the binding materials. The microstructure, micro-hardness and wear resistance were investigated using SEM, XRD, Micro-hardness Tester, and Friction and Wear Tester, respectively. The results show that the main phases of coating are TiC, TiB2 and α-Fe. The excellent metallurgical bonding is formed between the composite coating and substrate. The coating is uniform, continuous and almost defect-free and the particles are dispersively distributed in the cladded coating. Moreover, the formation mechanism was investigated. With the increase of the content of TiC+TiB2, the micro-hardness and wear resistance are also improved at the room temperature under normal atmosphere conditions.展开更多
基金Supported by national natural science fund of P.R.China,No.50272084.
文摘Utilizing SHS Reactive Flame Spraying (RFS) technology, TiC-TiB2-Al2O3 multiphase ceramics coatings were produced on steel substrate. Phase constituents and microstructure of the ceramic coatings were analyzed. The procedure of chemical combustion and structure transformation, reactive mechanism, and solidifying behavior during spaying were emphasized. Reactants which influenced on SHS spraying was discussed. SHS reactive spraying processes were studied. Mechanical properties of the coatings were tested.
基金Project(50075085) supported by the National Natural Science Foundation of ChinaProject supported by Heilongjiang Postdoctoral Grant of China
文摘Steel matrix composite coatings locally reinforced with in situ TiC-TiB2 particulates were prepared by argon arc cladding(AAC) with different mass fractions of Fe and Ti+B4C powders as the binding materials. The microstructure, micro-hardness and wear resistance were investigated using SEM, XRD, Micro-hardness Tester, and Friction and Wear Tester, respectively. The results show that the main phases of coating are TiC, TiB2 and α-Fe. The excellent metallurgical bonding is formed between the composite coating and substrate. The coating is uniform, continuous and almost defect-free and the particles are dispersively distributed in the cladded coating. Moreover, the formation mechanism was investigated. With the increase of the content of TiC+TiB2, the micro-hardness and wear resistance are also improved at the room temperature under normal atmosphere conditions.