The grindability of alloy Ti6AI4V with zireonia alumina and silicon carbide flap wheels, and the effect of process parameters on grinding forces, grinding temperature and surface integrity are studied. The grinding fo...The grindability of alloy Ti6AI4V with zireonia alumina and silicon carbide flap wheels, and the effect of process parameters on grinding forces, grinding temperature and surface integrity are studied. The grinding forces are measured by KISTLER 9265B dynamometer. The grinding temperature response is obtained by NI USB-621X signal collection system. Ground surface morphology and the metallographic structure are observed by the Hirox KN-7700 stereoscopic microcope and the Quanta200 scanning electron microscope (SEM). Surface roughnesses are measured by Mahr Perthometer M1 instrument. The surface microhardnesses are detected by HXS-1000 microhardness tester.展开更多
Dissimilar stir welding (FSW) lap joints were produced by friction out of Ti6A14V titanium alloy and AA2024 aluminum alloy sheets. The joints, welded with varying tool rotation and feed rate, were studied by ana- ly...Dissimilar stir welding (FSW) lap joints were produced by friction out of Ti6A14V titanium alloy and AA2024 aluminum alloy sheets. The joints, welded with varying tool rotation and feed rate, were studied by ana- lyzing the maximum shear strength, Vickers microhardness and optical observations. A dedicated numerical model, able to take into account the presence of the two different alloys, was used to highlight the effects of the process parameters on temperature distribution, strain distribution, and material flow. The combined analysis of experimental measurements and numerical predictions allowed explaining the effects of tool rotation and feed rate on the material flow. It was found that tool rotation had a larger impact on the joint effectiveness with respect to feed rate. A competition between material mixing and heat input occurs with increasing tool rotation, resulting in higher joint strength when lower values of tool rotation are used.展开更多
Titanium alloy is a kind of typical hard-to-cut material due to its low thermal conductivity and high strength at elevated temperatures, this contributes to the fast tool wear in the milling of titanium alloys. The in...Titanium alloy is a kind of typical hard-to-cut material due to its low thermal conductivity and high strength at elevated temperatures, this contributes to the fast tool wear in the milling of titanium alloys. The influence of cutting conditions on tool wear has been focused on the turning process, and their influence on tool wear in milling process as well as the influence of tool wear on cutting force coefficients has not been investigated comprehensively. To fully understand the tool wear behavior in milling process with inserts, the influence of cutting parameters on tool wear in the milling of titanium alloys Ti6A14V by using indexable cutters is investigated. The tool wear rate and trends under different feed per tooth, cutting speed, axial depth of cut and radial depth of cut are analyzed. The results show that the feed rate per tooth and the radial depth of cut have a large influence on tool wear in milling Ti6A14V with coated insert. To reduce tool wear, cutting parameters for coated inserts under experimental cutting conditions are set as: feed rate per tooth less than 0.07 mm, radial depth of cut less than 1.0 mm, and cutting speed sets between 60 and 150 m/min. Investigation on the relationship between tool wear and cutting force coefficients shows that tangential edge constant increases with tool wear and cutter edge chipping can lead to a great variety of tangential cutting force coefficient. The proposed research provides the basic data for evaluating the machinability of milling Ti6A14V alloy with coated inserts, and the recommend cutting parameters can be immediately applied in practical production.展开更多
基金Supported by the Natural Science Foundation of Jiangsu Province (BK2006723)New Century Ex-cellent Talents in University from Ministry of Education of China (NCET-07-0435)~~
文摘The grindability of alloy Ti6AI4V with zireonia alumina and silicon carbide flap wheels, and the effect of process parameters on grinding forces, grinding temperature and surface integrity are studied. The grinding forces are measured by KISTLER 9265B dynamometer. The grinding temperature response is obtained by NI USB-621X signal collection system. Ground surface morphology and the metallographic structure are observed by the Hirox KN-7700 stereoscopic microcope and the Quanta200 scanning electron microscope (SEM). Surface roughnesses are measured by Mahr Perthometer M1 instrument. The surface microhardnesses are detected by HXS-1000 microhardness tester.
文摘Dissimilar stir welding (FSW) lap joints were produced by friction out of Ti6A14V titanium alloy and AA2024 aluminum alloy sheets. The joints, welded with varying tool rotation and feed rate, were studied by ana- lyzing the maximum shear strength, Vickers microhardness and optical observations. A dedicated numerical model, able to take into account the presence of the two different alloys, was used to highlight the effects of the process parameters on temperature distribution, strain distribution, and material flow. The combined analysis of experimental measurements and numerical predictions allowed explaining the effects of tool rotation and feed rate on the material flow. It was found that tool rotation had a larger impact on the joint effectiveness with respect to feed rate. A competition between material mixing and heat input occurs with increasing tool rotation, resulting in higher joint strength when lower values of tool rotation are used.
基金Supported by National Basic Research Program of China(973 Program,Grant No.2013CB035802)National Natural Science Foundation of China(Grant No.51575453)+1 种基金Fundamental Research Funds for the Central Universities(Grant No.3102015JCS05002)the 111 Project,China(Grant No.B13044)
文摘Titanium alloy is a kind of typical hard-to-cut material due to its low thermal conductivity and high strength at elevated temperatures, this contributes to the fast tool wear in the milling of titanium alloys. The influence of cutting conditions on tool wear has been focused on the turning process, and their influence on tool wear in milling process as well as the influence of tool wear on cutting force coefficients has not been investigated comprehensively. To fully understand the tool wear behavior in milling process with inserts, the influence of cutting parameters on tool wear in the milling of titanium alloys Ti6A14V by using indexable cutters is investigated. The tool wear rate and trends under different feed per tooth, cutting speed, axial depth of cut and radial depth of cut are analyzed. The results show that the feed rate per tooth and the radial depth of cut have a large influence on tool wear in milling Ti6A14V with coated insert. To reduce tool wear, cutting parameters for coated inserts under experimental cutting conditions are set as: feed rate per tooth less than 0.07 mm, radial depth of cut less than 1.0 mm, and cutting speed sets between 60 and 150 m/min. Investigation on the relationship between tool wear and cutting force coefficients shows that tangential edge constant increases with tool wear and cutter edge chipping can lead to a great variety of tangential cutting force coefficient. The proposed research provides the basic data for evaluating the machinability of milling Ti6A14V alloy with coated inserts, and the recommend cutting parameters can be immediately applied in practical production.