Severe plastic deformation of Ti-10V-2Fe-3Al alloy in the surface region was caused by shot peening at air pressure of 0.6 MPa with processing time ranging from 1 to 45 min.The results showed that the thickness of sur...Severe plastic deformation of Ti-10V-2Fe-3Al alloy in the surface region was caused by shot peening at air pressure of 0.6 MPa with processing time ranging from 1 to 45 min.The results showed that the thickness of surface deformation layer was proportio nal to the processing time,the microhardness of the shot-peened surface in creased from 280 to 385 HV,and the depth of highly hardening layers arrived at 200μm.It was worth noting that a grain size gradient from nanocrystalline on the surface toward coarse grain in the matrix was obtained during the shot peening process and the minimum grain size in the top surface after shot peening was about 100-200 nm.展开更多
In fatigue critical applications, Ti-10V-2Fe-3Al alloy components are expected to endure cyclic loading with cycles above 109. To assess their operating safety, S-N relations of Ti-10V-2Fe-3Al alloy in very high cycle...In fatigue critical applications, Ti-10V-2Fe-3Al alloy components are expected to endure cyclic loading with cycles above 109. To assess their operating safety, S-N relations of Ti-10V-2Fe-3Al alloy in very high cycle fatigue (VHCF) regime are of concern and have been investigated in this work. Fatigue behavior including S-N curves and crack initiation mechanisms is reported. Two transitions of fatigue crack initi- ation mechanism, from internal crack initiation to surface crack initiation and from αp cleavage to αS/β decohesion, occur when the stress ratio (R) and stress level are reduced. Fatigue limits exist at Nr = 6×10^7 cycles for all stress ratios except for 0.5. In the VHCF regime two kinds of internal crack initiation mechanisms exist, i.e., coalescence of cluster of αp facets and αS/β decohesion. Their mutual competition depends on the stress ratio and can be interpreted in terms of different stress character required for promotion on different internal crack initiation mechanism. Small crack propagation is discussed to be life controlling process under the stress ratio range from -0.5 to 0.1 during VHCF regime while under the stress ratio 0.5 VHCF, life almost refers to the life required for crack initiation.2017 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.展开更多
Anodic oxide films grown on titanium alloy Ti-10V-2Fe-3Al in the solution of sodium tartrate, then sealed in boiling deionised water and calcium acetate solution were observed by using field emission scanning electron...Anodic oxide films grown on titanium alloy Ti-10V-2Fe-3Al in the solution of sodium tartrate, then sealed in boiling deionised water and calcium acetate solution were observed by using field emission scanning electron microscopy (FE-SEM), and were chemically analysed by using energy dispersive spectroscopy (EDS). Corrosion behaviour was investigated in a 3.5% sodium chloride solution, using electrochemical impedance spectroscopy (EIS). The morphology of the anodic oxide films was dependent on the sealing processes. The surface sealed in calcium acetate solution presented a more homogeneous and smooth structure compared with that sealed in boiling deionised water. The corrosion resistance of the oxide films sealed in calcium acetate solution was better than that sealed in boiling deionised water.展开更多
The microstructure evolution and formability of Ti-10V-2Fe-3Al alloy related to the initial microstructures and processing variables were investigated during hot forming process. The experimental results show that the...The microstructure evolution and formability of Ti-10V-2Fe-3Al alloy related to the initial microstructures and processing variables were investigated during hot forming process. The experimental results show that the α-phase growth is controlled by solute diffusion during the heat treatment processes. Four different microstructures were established by combinations of several heat treatments, and Ti-10V-2Fe-3Al alloy shows excellent formability both above and below the β transus temperature. The alloy possesses low deformation resistance and active restoration mechanism during the deformation. A constitutive equation describing the hot deformation behavior of Ti-10V-2Fe-3Al alloy was obtained. Higher fl ow stress was observed for the acicular morphology of α phase in microstructures with large aspect ratios as compared with that of small aspect ratios. Due to the dynamic recovery in soft β phase, and the dynamic recrystallization and breakage of acicular α-phase, fl ow softening occurred signifi cantly during deformation. Dynamic recrystallization also occurred especially in the severely deformed regions of forged parts.展开更多
Effect of β-flecks on properties of tensile elongation and low cycle.fatigue life at room tern. perature for Ti-10V-2Fe-3Al alloy has been investigated.The cracks along initial β-grain boundaries in the β-fleck reg...Effect of β-flecks on properties of tensile elongation and low cycle.fatigue life at room tern. perature for Ti-10V-2Fe-3Al alloy has been investigated.The cracks along initial β-grain boundaries in the β-fleck region may propagate to form intergranular brittle fracture.Under alternating load,the β-fleck often becomes a fatigue origin.While under higher strain,the cracks initiate and propagate to fracture early at the original β-grain boundaries in β-fleck region and at α-grain boundaries.展开更多
基金the National Natural Science Foundation of China(Grant No.51361026)the Natural Science Foundation of Jiangxi Province(Grant No.20171BAB206006)+1 种基金the Key Project of Science and Technology Project of Jiangxi Provincial Education Department(Grant No.GJJ160678)Open Foundation of National Defense Key Discipline Laboratory of Light Alloy Processing Science and Technology,Nanchang Hangkong University(GF201501004).
文摘Severe plastic deformation of Ti-10V-2Fe-3Al alloy in the surface region was caused by shot peening at air pressure of 0.6 MPa with processing time ranging from 1 to 45 min.The results showed that the thickness of surface deformation layer was proportio nal to the processing time,the microhardness of the shot-peened surface in creased from 280 to 385 HV,and the depth of highly hardening layers arrived at 200μm.It was worth noting that a grain size gradient from nanocrystalline on the surface toward coarse grain in the matrix was obtained during the shot peening process and the minimum grain size in the top surface after shot peening was about 100-200 nm.
文摘In fatigue critical applications, Ti-10V-2Fe-3Al alloy components are expected to endure cyclic loading with cycles above 109. To assess their operating safety, S-N relations of Ti-10V-2Fe-3Al alloy in very high cycle fatigue (VHCF) regime are of concern and have been investigated in this work. Fatigue behavior including S-N curves and crack initiation mechanisms is reported. Two transitions of fatigue crack initi- ation mechanism, from internal crack initiation to surface crack initiation and from αp cleavage to αS/β decohesion, occur when the stress ratio (R) and stress level are reduced. Fatigue limits exist at Nr = 6×10^7 cycles for all stress ratios except for 0.5. In the VHCF regime two kinds of internal crack initiation mechanisms exist, i.e., coalescence of cluster of αp facets and αS/β decohesion. Their mutual competition depends on the stress ratio and can be interpreted in terms of different stress character required for promotion on different internal crack initiation mechanism. Small crack propagation is discussed to be life controlling process under the stress ratio range from -0.5 to 0.1 during VHCF regime while under the stress ratio 0.5 VHCF, life almost refers to the life required for crack initiation.2017 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
基金Supported by the National Natural Science Foundation of China(No.51271012)
文摘Anodic oxide films grown on titanium alloy Ti-10V-2Fe-3Al in the solution of sodium tartrate, then sealed in boiling deionised water and calcium acetate solution were observed by using field emission scanning electron microscopy (FE-SEM), and were chemically analysed by using energy dispersive spectroscopy (EDS). Corrosion behaviour was investigated in a 3.5% sodium chloride solution, using electrochemical impedance spectroscopy (EIS). The morphology of the anodic oxide films was dependent on the sealing processes. The surface sealed in calcium acetate solution presented a more homogeneous and smooth structure compared with that sealed in boiling deionised water. The corrosion resistance of the oxide films sealed in calcium acetate solution was better than that sealed in boiling deionised water.
基金Funded by the National Natural Science Foundation of China(Nos.51222405 and 51474063)
文摘The microstructure evolution and formability of Ti-10V-2Fe-3Al alloy related to the initial microstructures and processing variables were investigated during hot forming process. The experimental results show that the α-phase growth is controlled by solute diffusion during the heat treatment processes. Four different microstructures were established by combinations of several heat treatments, and Ti-10V-2Fe-3Al alloy shows excellent formability both above and below the β transus temperature. The alloy possesses low deformation resistance and active restoration mechanism during the deformation. A constitutive equation describing the hot deformation behavior of Ti-10V-2Fe-3Al alloy was obtained. Higher fl ow stress was observed for the acicular morphology of α phase in microstructures with large aspect ratios as compared with that of small aspect ratios. Due to the dynamic recovery in soft β phase, and the dynamic recrystallization and breakage of acicular α-phase, fl ow softening occurred signifi cantly during deformation. Dynamic recrystallization also occurred especially in the severely deformed regions of forged parts.
文摘Effect of β-flecks on properties of tensile elongation and low cycle.fatigue life at room tern. perature for Ti-10V-2Fe-3Al alloy has been investigated.The cracks along initial β-grain boundaries in the β-fleck region may propagate to form intergranular brittle fracture.Under alternating load,the β-fleck often becomes a fatigue origin.While under higher strain,the cracks initiate and propagate to fracture early at the original β-grain boundaries in β-fleck region and at α-grain boundaries.