We report a pulsed surface-emitted THz-wave parametric oscillator based on two MgO:LiNbO3 crystals pumped by a multi-longitudinal mode Q-switched Nd:YAG laser. Through varying the phase matching angle, the tunable T...We report a pulsed surface-emitted THz-wave parametric oscillator based on two MgO:LiNbO3 crystals pumped by a multi-longitudinal mode Q-switched Nd:YAG laser. Through varying the phase matching angle, the tunable THzwave output from 0.79 THz to 2.84 THz is realized. The maximum THz-wave output was 193.2 n J/pulse at 1.84 THz as the pump power density was 212.5 MW/cm2, corresponding to the energy conversion efficiency of 2.42Х10-6 and the photon conversion efficiency of about 0.037%. When the pump power density changed from 123 MW/cm^2 to 148 MW/cm^2 and 164 MW/cm^2, the maximum output of the THz-wave moved to the high frequency band. We give a reasonable explanation for this phenomenon.展开更多
This paper investigates the performances of terahertz-wave parametric oscillators (TPOs) based on the LiNbO3 crystal at different pump wavelengths.The calculated results show that TPO characteristics,including the f...This paper investigates the performances of terahertz-wave parametric oscillators (TPOs) based on the LiNbO3 crystal at different pump wavelengths.The calculated results show that TPO characteristics,including the frequency tuning range,the THz-wave gain and the stability of THz-wave output direction based on the Si-prism coupler,can be significantly improved by using a short-wavelength pump.It also demonstrates that a long-wavelength-pump allows the employment of a short TPO cavity due to an enlarged phase-matching angle,that is,an increased angular separation between the pump and oscillated Stokes beams under the THz-wave generation at a specific frequency. The study provides an useful guide and a theoretical basis for the further improvement of TPO systems.展开更多
An asymmetric quantum well (AQW) is designed to emit terahertz (THz) waves by using difference frequency generation (DFG) with the structure of GaAs/Al0.2Ga0.8As/Al0.5Ga0.sAs. The characteristics of absorption c...An asymmetric quantum well (AQW) is designed to emit terahertz (THz) waves by using difference frequency generation (DFG) with the structure of GaAs/Al0.2Ga0.8As/Al0.5Ga0.sAs. The characteristics of absorption coefficients are analysed under the parabolic and non-parabolic energy-band conditions in detail. We find that the absorption coefficients vary with the two pump optical intensities, and they reach the maxima when the pump wavelengths are given as λp1 = 9.70 μm and λp2 = 10.64 μm, respectively. Compared with non-parabolic conditions, the total absorption coefficient under parabolic conditions shows a blue shift, which is due to the increase in the energy difference between the ground and excited states. By adjusting the two pump optical intensities, the wave vector phase-matching condition inside the AQW is satisfied.展开更多
GaP terahertz (THz) two-dimensional (2D) photonic crystal (PC) waveguides with line defects were fabricated using inductively-coupled plasma reactive-ion etching (ICP-RIE) in Ar/Cl2 gas chemistries. THz-wave generatio...GaP terahertz (THz) two-dimensional (2D) photonic crystal (PC) waveguides with line defects were fabricated using inductively-coupled plasma reactive-ion etching (ICP-RIE) in Ar/Cl2 gas chemistries. THz-wave generation from the fabricated PC waveguides was demonstrated under collinear phase-matched difference-frequency generation (DFG), using Cr:Forsterite (Cr:F) lasers as the incident source. We compared the THz-wave output characteristics of the PC waveguides with that of GaP planar waveguides. The collinear phase-matching conditions in the DFG process were satisfied for 300- and 500-μm-wide PC waveguide structures at 0.7 and 0.6 THz, respectively. The additional output peaks that appeared near the edge of the photonic band gap, around 0.5 THz, were attributed to the guiding modes in the PC waveguide;no such peaks appeared in the non-patterned ridge waveguides. These experimental results suggest that the phonon-polariton confinement in THz-PC waveguides based on the GaP crystal could be used to enhance the nonlinear optical effect for THz-wave generation.展开更多
We present a mechanically tunable broadband terahertz(THz) modulator based on the high-aligned Ni nanowire(NW)arrays. The modulator is a sandwich structure consisting of two polydimethylsiloxane layers and a central l...We present a mechanically tunable broadband terahertz(THz) modulator based on the high-aligned Ni nanowire(NW)arrays. The modulator is a sandwich structure consisting of two polydimethylsiloxane layers and a central layer of highaligned Ni NW arrays. Our experimental measurements reveal the transmittance of THz wave can be effectively modulated by mechanical stretching. The NW density in arrays increases with the strain increasing, which induced an enhancement in the absorption of THz wave. When the strain increases from 0 to 6.5%, a linear relationship is observed for the variation of modulation depth(MD) of THz wave regarding the strain, and the modulated range is from 0 to 85% in a frequency range from 0.3 THz to 1.8 THz. Moreover, the detectable MD is about 15% regarding the 1% strain change resolution. This flexible Ni NW-based modulator can be promised many applications, such as remote strain sensing, and wearable devices.展开更多
High-power terahertz(THz) generation in the frequency range of 0.1-10 THz has been a fast-developing research area ever since the beginning of the THz boom two decades ago, enabling new technological breakthroughs in ...High-power terahertz(THz) generation in the frequency range of 0.1-10 THz has been a fast-developing research area ever since the beginning of the THz boom two decades ago, enabling new technological breakthroughs in spectroscopy, communication, imaging,etc. By using optical(laser) pumping methods with near-or mid-infrared(IR) lasers, flexible and practical THz sources covering the whole THz range can be realized to overcome the shortage of electronic THz sources and now they are playing important roles in THz science and technology. This paper overviews various optically pumped THz sources, including femtosecond laser based ultrafast broadband THz generation, monochromatic widely tunable THz generation, single-mode on-chip THz source from photomixing, and the traditional powerful THz gas lasers. Full descriptions from basic principles to the latest progress are presented and their advantages and disadvantages are discussed as well. It is expected that this review gives a comprehensive reference to researchers in this area and additionally helps newcomers to quickly gain understanding of optically pumped THz sources.展开更多
基金Project supported by the National Basic Research Program of China (Grant No. 2007CB310403)the National Natural Science Foundation of China (Grant No. 60801017)the Research Fund for the Doctoral Program of Higher Education of China(Grant No. 20070420118)
文摘We report a pulsed surface-emitted THz-wave parametric oscillator based on two MgO:LiNbO3 crystals pumped by a multi-longitudinal mode Q-switched Nd:YAG laser. Through varying the phase matching angle, the tunable THzwave output from 0.79 THz to 2.84 THz is realized. The maximum THz-wave output was 193.2 n J/pulse at 1.84 THz as the pump power density was 212.5 MW/cm2, corresponding to the energy conversion efficiency of 2.42Х10-6 and the photon conversion efficiency of about 0.037%. When the pump power density changed from 123 MW/cm^2 to 148 MW/cm^2 and 164 MW/cm^2, the maximum output of the THz-wave moved to the high frequency band. We give a reasonable explanation for this phenomenon.
基金Project supported in part by the Foundation for Innovative Research of Wuhan National Laboratory for Optoelectronicsthe National Basic Research Program of China (Grant No 2007CB310403)
文摘This paper investigates the performances of terahertz-wave parametric oscillators (TPOs) based on the LiNbO3 crystal at different pump wavelengths.The calculated results show that TPO characteristics,including the frequency tuning range,the THz-wave gain and the stability of THz-wave output direction based on the Si-prism coupler,can be significantly improved by using a short-wavelength pump.It also demonstrates that a long-wavelength-pump allows the employment of a short TPO cavity due to an enlarged phase-matching angle,that is,an increased angular separation between the pump and oscillated Stokes beams under the THz-wave generation at a specific frequency. The study provides an useful guide and a theoretical basis for the further improvement of TPO systems.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60801017,61172010,61101058,and 61107086)the Fund from the Science and Technology Committee of Tianjin,China (Grant No. 11JCYBJC01100)
文摘An asymmetric quantum well (AQW) is designed to emit terahertz (THz) waves by using difference frequency generation (DFG) with the structure of GaAs/Al0.2Ga0.8As/Al0.5Ga0.sAs. The characteristics of absorption coefficients are analysed under the parabolic and non-parabolic energy-band conditions in detail. We find that the absorption coefficients vary with the two pump optical intensities, and they reach the maxima when the pump wavelengths are given as λp1 = 9.70 μm and λp2 = 10.64 μm, respectively. Compared with non-parabolic conditions, the total absorption coefficient under parabolic conditions shows a blue shift, which is due to the increase in the energy difference between the ground and excited states. By adjusting the two pump optical intensities, the wave vector phase-matching condition inside the AQW is satisfied.
文摘GaP terahertz (THz) two-dimensional (2D) photonic crystal (PC) waveguides with line defects were fabricated using inductively-coupled plasma reactive-ion etching (ICP-RIE) in Ar/Cl2 gas chemistries. THz-wave generation from the fabricated PC waveguides was demonstrated under collinear phase-matched difference-frequency generation (DFG), using Cr:Forsterite (Cr:F) lasers as the incident source. We compared the THz-wave output characteristics of the PC waveguides with that of GaP planar waveguides. The collinear phase-matching conditions in the DFG process were satisfied for 300- and 500-μm-wide PC waveguide structures at 0.7 and 0.6 THz, respectively. The additional output peaks that appeared near the edge of the photonic band gap, around 0.5 THz, were attributed to the guiding modes in the PC waveguide;no such peaks appeared in the non-patterned ridge waveguides. These experimental results suggest that the phonon-polariton confinement in THz-PC waveguides based on the GaP crystal could be used to enhance the nonlinear optical effect for THz-wave generation.
基金Project supported by the National Natural Science Foundation of China (Grant No. 62075245)Xinjiang Uygur Autonomous Region University Scientific Research Foundation (Grant No. XJEDU2018I021)。
文摘We present a mechanically tunable broadband terahertz(THz) modulator based on the high-aligned Ni nanowire(NW)arrays. The modulator is a sandwich structure consisting of two polydimethylsiloxane layers and a central layer of highaligned Ni NW arrays. Our experimental measurements reveal the transmittance of THz wave can be effectively modulated by mechanical stretching. The NW density in arrays increases with the strain increasing, which induced an enhancement in the absorption of THz wave. When the strain increases from 0 to 6.5%, a linear relationship is observed for the variation of modulation depth(MD) of THz wave regarding the strain, and the modulated range is from 0 to 85% in a frequency range from 0.3 THz to 1.8 THz. Moreover, the detectable MD is about 15% regarding the 1% strain change resolution. This flexible Ni NW-based modulator can be promised many applications, such as remote strain sensing, and wearable devices.
基金supported by the National Basic Research Program of China(Grant No.2014CB339802)the National Natural Science Foundation of China(Grant Nos.61675146,61471257,61505089,61275102&61271066)
文摘High-power terahertz(THz) generation in the frequency range of 0.1-10 THz has been a fast-developing research area ever since the beginning of the THz boom two decades ago, enabling new technological breakthroughs in spectroscopy, communication, imaging,etc. By using optical(laser) pumping methods with near-or mid-infrared(IR) lasers, flexible and practical THz sources covering the whole THz range can be realized to overcome the shortage of electronic THz sources and now they are playing important roles in THz science and technology. This paper overviews various optically pumped THz sources, including femtosecond laser based ultrafast broadband THz generation, monochromatic widely tunable THz generation, single-mode on-chip THz source from photomixing, and the traditional powerful THz gas lasers. Full descriptions from basic principles to the latest progress are presented and their advantages and disadvantages are discussed as well. It is expected that this review gives a comprehensive reference to researchers in this area and additionally helps newcomers to quickly gain understanding of optically pumped THz sources.