Components of the TGF-β superfamily have been well established in their intricate and multifaceted roles in cancer progression and survival. The TGF-βs have been targeted therapeutically in an attempt to modify comp...Components of the TGF-β superfamily have been well established in their intricate and multifaceted roles in cancer progression and survival. The TGF-βs have been targeted therapeutically in an attempt to modify complex tumour networks to favour cancer cell destruction. Goals of these therapies are often to attack the “hallmarks” of cancer: characteristics acquired by cancer cells via re-wiring or manipulating existing biological pathways to their survival advantage. Of the multitude of targeted therapies currently available, viral therapies have shown much promise in their efficacy of treatment. This review highlights current viral therapies targeting members of the TGF-β superfamily, with a focus on the strengths and limitations associated with this form of targeted cancer therapy.展开更多
Nuclear accumulation of active Smad complexes is crucial for transduction of transforming growth factor β (TGF-β)- superfamily signals from transmembrane receptors into the nucleus. It is now clear that the nucleo...Nuclear accumulation of active Smad complexes is crucial for transduction of transforming growth factor β (TGF-β)- superfamily signals from transmembrane receptors into the nucleus. It is now clear that the nucleocytoplasmic distributions of Smads, in both the absence and the presence of a TGF-β-superfamily signal, are not static, but instead the Smads are continuously shuttling between the nucleus and the cytoplasm in both conditions. This article presents the evidence for continuous nucleocytoplasmic shuttling of Smads. It then reviews different mechanisms that have been proposed to mediate Smad nuclear import and export, and discusses how the Smad steady-state distributions in the absence and the presence of a TGF-β-superfamily signal are established. Finally, the biological relevance of continuous nucleocytoplasmic shuttling for signaling by TGF-β superfamily members is discussed.展开更多
文摘Components of the TGF-β superfamily have been well established in their intricate and multifaceted roles in cancer progression and survival. The TGF-βs have been targeted therapeutically in an attempt to modify complex tumour networks to favour cancer cell destruction. Goals of these therapies are often to attack the “hallmarks” of cancer: characteristics acquired by cancer cells via re-wiring or manipulating existing biological pathways to their survival advantage. Of the multitude of targeted therapies currently available, viral therapies have shown much promise in their efficacy of treatment. This review highlights current viral therapies targeting members of the TGF-β superfamily, with a focus on the strengths and limitations associated with this form of targeted cancer therapy.
文摘Nuclear accumulation of active Smad complexes is crucial for transduction of transforming growth factor β (TGF-β)- superfamily signals from transmembrane receptors into the nucleus. It is now clear that the nucleocytoplasmic distributions of Smads, in both the absence and the presence of a TGF-β-superfamily signal, are not static, but instead the Smads are continuously shuttling between the nucleus and the cytoplasm in both conditions. This article presents the evidence for continuous nucleocytoplasmic shuttling of Smads. It then reviews different mechanisms that have been proposed to mediate Smad nuclear import and export, and discusses how the Smad steady-state distributions in the absence and the presence of a TGF-β-superfamily signal are established. Finally, the biological relevance of continuous nucleocytoplasmic shuttling for signaling by TGF-β superfamily members is discussed.