In this paper, we investigate the implications of electro-osmosis on electrohydrodynamic transport of a non-Newtonian fluid on a hydrophobic micro-channel by developing a suitable analytical method. Velocity-slip and ...In this paper, we investigate the implications of electro-osmosis on electrohydrodynamic transport of a non-Newtonian fluid on a hydrophobic micro-channel by developing a suitable analytical method. Velocity-slip and temperature-jump conditions are paid due attention. An attempt has been made to examine the effects of rheological and electro-osmotic parameters on the kinematics of the fluid. The nonlinear Poisson-Boltzmann equation governing the formation of the electrical double layer and the body force that is generated by the applied potential are accounted for in the study. Perturbation solutions are presented. In order to exhibit the applicability of the analysis, the problem of electro-osmotic flow and heat transfer of blood in an arteriole has been taken up as an illustrative example of a real-life problem. An intensive quantitative study has been made through numerical computation of the physical variables involved in the analysis, which are of special interest in the study. The computational results are presented graphically. The study reveals that the temperature of blood can be controlled by increasing/decreasing the Joule heating parameter.展开更多
Elucidating the initial kinetics of folding pathways is critical to the understanding of the protein folding mechanism. Transient infrared spectroscopy has proved a powerful tool to probe the folding kinetics. Herein ...Elucidating the initial kinetics of folding pathways is critical to the understanding of the protein folding mechanism. Transient infrared spectroscopy has proved a powerful tool to probe the folding kinetics. Herein we report the construction of a nanosecond laser-induced temperature-jump (T-jump) technique coupled to a nanosecond timeresolved transient mid-infrared (mid-IR) spectrometer system capable of investigating the protein folding kinetics with a temporal resolution of 50 ns after deconvolution of the instrumental response function. The mid-IR source is a liquid N2 cooled CO laser covering a spectral range of 5.0μm (2000 cm^-1)-6.5μm (1540 cm^-1). The heating pulse was generated by a high pressure H2 Raman shifter at wavelength of 1.9μm. The maximum temperature-jump could reach as high as 26±1℃. The fast folding/unfolding dynamics of cytochrome C was investigated by the constructed system, providing an example.展开更多
β-Crystallins are the major structural proteins existing in the vertebrate lens, and their conformational stability is critical in maintaining the life-long transparency and refraction index of the lens. Seven subuni...β-Crystallins are the major structural proteins existing in the vertebrate lens, and their conformational stability is critical in maintaining the life-long transparency and refraction index of the lens. Seven subunits of β-crystallins naturally assemble into various heteroge- neous oligomers with different sizes. Here, we systematically investigated the thermal sta- bility of the different secondary structures present in β-Crystallins and then the dynamic process for the thermal-induced unfolding of β-crystallins by Fourier transform infrared spectroscopy-monitored thermal titration and temperature-jump nanosecond time-resolved IR difference absorbance spectra. Our results show that the N-terminal anti-parallel β-sheets in β-crystallin are the most unstable with a transition midpoint temperature at 36.0-2.1℃, leading to the formation of an intermediate consisting vastly of random coil structures. This intermediate structure is temporally assigned to that of the monomer generated by the thermal-induced disassembly of β-crystallin oligomers with a transition midpoint tempera- ture of 40.4-0.7℃. The global unfolding of β-crystallins that leads to denaturation and aggregation indicated by the formation of intermolecular anti-parallel β-sheets has a transi- tion midpoint temperature determined as 72.4-0.2 ℃. Temperature-jump time-resolved IR absorbance difference spectroscopy analysis further reveals that thermal-induced unfolding of β-crystallins occurs firstly in the anti-parallel β-sheets in the N-terminal domains with a time constant of 50 ns.展开更多
In this paper, we present a novel design scheme of temperature-jump(T-jump) area for microfluidic device.Numerical simulation and experimental research of thermal characteristics of the solution in microchannels is co...In this paper, we present a novel design scheme of temperature-jump(T-jump) area for microfluidic device.Numerical simulation and experimental research of thermal characteristics of the solution in microchannels is completed.Numerical simulation of the temperature-jump microchannel is analyzed to study the heat transfer characteristics by comparing performance of three proposed configurations.Calculation of the power requirement is discussed in the dimensional design of microheater. Temperature-sensitive fluorescent dye is applied to investigate the temperature field of microchannel heated by a designed microheater. It is found that the T-jump microfluidic device can provide rapid heating for solutions with strong convection heat transfer ability.展开更多
基金Science and Engineering Research Board, Department of Science and Technology, Government of India, New Delhi for the financial support of this investigation through (Grant No. SB/S4/MS: 864/14)
文摘In this paper, we investigate the implications of electro-osmosis on electrohydrodynamic transport of a non-Newtonian fluid on a hydrophobic micro-channel by developing a suitable analytical method. Velocity-slip and temperature-jump conditions are paid due attention. An attempt has been made to examine the effects of rheological and electro-osmotic parameters on the kinematics of the fluid. The nonlinear Poisson-Boltzmann equation governing the formation of the electrical double layer and the body force that is generated by the applied potential are accounted for in the study. Perturbation solutions are presented. In order to exhibit the applicability of the analysis, the problem of electro-osmotic flow and heat transfer of blood in an arteriole has been taken up as an illustrative example of a real-life problem. An intensive quantitative study has been made through numerical computation of the physical variables involved in the analysis, which are of special interest in the study. The computational results are presented graphically. The study reveals that the temperature of blood can be controlled by increasing/decreasing the Joule heating parameter.
基金Project supported by the National Natural Science Foundation of China (Grant No 20373088) and Program for innovation group (Grant No 60321002).
文摘Elucidating the initial kinetics of folding pathways is critical to the understanding of the protein folding mechanism. Transient infrared spectroscopy has proved a powerful tool to probe the folding kinetics. Herein we report the construction of a nanosecond laser-induced temperature-jump (T-jump) technique coupled to a nanosecond timeresolved transient mid-infrared (mid-IR) spectrometer system capable of investigating the protein folding kinetics with a temporal resolution of 50 ns after deconvolution of the instrumental response function. The mid-IR source is a liquid N2 cooled CO laser covering a spectral range of 5.0μm (2000 cm^-1)-6.5μm (1540 cm^-1). The heating pulse was generated by a high pressure H2 Raman shifter at wavelength of 1.9μm. The maximum temperature-jump could reach as high as 26±1℃. The fast folding/unfolding dynamics of cytochrome C was investigated by the constructed system, providing an example.
文摘β-Crystallins are the major structural proteins existing in the vertebrate lens, and their conformational stability is critical in maintaining the life-long transparency and refraction index of the lens. Seven subunits of β-crystallins naturally assemble into various heteroge- neous oligomers with different sizes. Here, we systematically investigated the thermal sta- bility of the different secondary structures present in β-Crystallins and then the dynamic process for the thermal-induced unfolding of β-crystallins by Fourier transform infrared spectroscopy-monitored thermal titration and temperature-jump nanosecond time-resolved IR difference absorbance spectra. Our results show that the N-terminal anti-parallel β-sheets in β-crystallin are the most unstable with a transition midpoint temperature at 36.0-2.1℃, leading to the formation of an intermediate consisting vastly of random coil structures. This intermediate structure is temporally assigned to that of the monomer generated by the thermal-induced disassembly of β-crystallin oligomers with a transition midpoint tempera- ture of 40.4-0.7℃. The global unfolding of β-crystallins that leads to denaturation and aggregation indicated by the formation of intermolecular anti-parallel β-sheets has a transi- tion midpoint temperature determined as 72.4-0.2 ℃. Temperature-jump time-resolved IR absorbance difference spectroscopy analysis further reveals that thermal-induced unfolding of β-crystallins occurs firstly in the anti-parallel β-sheets in the N-terminal domains with a time constant of 50 ns.
基金supported by the National Basic Research Program of China(No.2011CB911104)
文摘In this paper, we present a novel design scheme of temperature-jump(T-jump) area for microfluidic device.Numerical simulation and experimental research of thermal characteristics of the solution in microchannels is completed.Numerical simulation of the temperature-jump microchannel is analyzed to study the heat transfer characteristics by comparing performance of three proposed configurations.Calculation of the power requirement is discussed in the dimensional design of microheater. Temperature-sensitive fluorescent dye is applied to investigate the temperature field of microchannel heated by a designed microheater. It is found that the T-jump microfluidic device can provide rapid heating for solutions with strong convection heat transfer ability.