期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
平均和折扣准则MDP基于TD(0)学习的统一NDP方法 被引量:5
1
作者 唐昊 周雷 袁继彬 《控制理论与应用》 EI CAS CSCD 北大核心 2006年第2期292-296,共5页
为适应实际大规模M arkov系统的需要,讨论M arkov决策过程(MDP)基于仿真的学习优化问题.根据定义式,建立性能势在平均和折扣性能准则下统一的即时差分公式,并利用一个神经元网络来表示性能势的估计值,导出参数TD(0)学习公式和算法,进行... 为适应实际大规模M arkov系统的需要,讨论M arkov决策过程(MDP)基于仿真的学习优化问题.根据定义式,建立性能势在平均和折扣性能准则下统一的即时差分公式,并利用一个神经元网络来表示性能势的估计值,导出参数TD(0)学习公式和算法,进行逼近策略评估;然后,根据性能势的逼近值,通过逼近策略迭代来实现两种准则下统一的神经元动态规划(neuro-dynam ic programm ing,NDP)优化方法.研究结果适用于半M arkov决策过程,并通过一个数值例子,说明了文中的神经元策略迭代算法对两种准则都适用,验证了平均问题是折扣问题当折扣因子趋近于零时的极限情况. 展开更多
关键词 MARKOV决策过程 性能势 td(0)学习 神经元动态规划
下载PDF
SMDP基于Actor网络的统一NDP方法
2
作者 唐昊 陈栋 +1 位作者 周雷 吴玉华 《控制与决策》 EI CSCD 北大核心 2007年第2期155-159,共5页
研究半马尔可夫决策过程(SMDP)基于性能势学习和策略逼近的神经元动态规划(NDP)方法.通过SMDP的一致马尔可夫链的单个样本轨道,给出了折扣和平均准则下统一的性能势TD(λ)学习算法,进行逼近策略评估;利用一个神经元网络逼近结构作为行动... 研究半马尔可夫决策过程(SMDP)基于性能势学习和策略逼近的神经元动态规划(NDP)方法.通过SMDP的一致马尔可夫链的单个样本轨道,给出了折扣和平均准则下统一的性能势TD(λ)学习算法,进行逼近策略评估;利用一个神经元网络逼近结构作为行动器(Actor)表示策略,并根据性能势的学习值给出策略参数改进的两种方法.最后通过数值例子说明了有关算法的有效性. 展开更多
关键词 半MARKOV决策过程 性能势 td(λ)学习 神经元动态规划
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部