期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
New method for cotton fractional vegetation cover extraction based on UAV RGB images 被引量:1
1
作者 Huanbo Yang Yubin Lan +3 位作者 Liqun Lu Daocai Gong Jianchi Miao Jing Zhao 《International Journal of Agricultural and Biological Engineering》 SCIE CAS 2022年第4期172-180,共9页
As the key principle of precision farming,the distribution of fractional vegetation cover is the basis of crop management within the field serves.To estimate crop FVC rapidly at the farm scale,high temporal-spatial re... As the key principle of precision farming,the distribution of fractional vegetation cover is the basis of crop management within the field serves.To estimate crop FVC rapidly at the farm scale,high temporal-spatial resolution imagery obtained by unmanned aerial vehicle(UAV)was adopted.To verify the application potential of consumer-grade UAV RGB imagery in estimated FVC,blue-green characteristic vegetation index(TBVI)and red-green vegetation index(TRVI)were proposed in this study according to the differences of the gray value among cotton vegetation,soil and shadow in the field.First,two new constructed indices and several published indices were used to extract visible light images and generate greyscale images for each of the visible light vegetation indices.Then,the thresholds of cotton vegetation and non-vegetation pixels were established based on the vegetation index threshold method which combines support vector machine classification and vegetation index.Finally,the accuracy difference in vegetation information extraction between the newly constructed and several published indices was compared.The results show that the accuracy of the information extracted by TRVI is higher than that of subdivision index of other visible light(FVC extraction precision in the first bud stage of cotton:R2=0.832,RMSE=2.307,nRMSE=4.405%;FVC extraction precision in the bud stage of cotton:R2=0.981,RMSE=1.393,nRMSE=1.984%;FVC extraction precision in the flowering stage of cotton:R2=0.893,RMSE=2.101,nRMSE=2.422%;FVC extraction precision in the boll stage of cotton:R2=0.958,RMSE=1.850,nRMSE=2.050%). 展开更多
关键词 COTTON UAV visible light images fractional vegetation cover vegetation index threshold method TRVI tbvi
原文传递
基于双波段植被指数(TBVI)的柑橘冠层含氮量预测及可视化研究 被引量:14
2
作者 王巧男 叶旭君 +2 位作者 李金梦 肖宇钊 何勇 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2015年第3期715-718,共4页
氮素(nitrogen,N)是果树生长发育的必需重要元素,及时准确地无损检测果树的氮素水平对果实增产、合理施肥以及减少环境污染等具有重要意义。研究了基于高光谱成像技术进行柑橘冠层含氮量预测及可视化的可行性。实验采用高光谱成像光谱仪... 氮素(nitrogen,N)是果树生长发育的必需重要元素,及时准确地无损检测果树的氮素水平对果实增产、合理施肥以及减少环境污染等具有重要意义。研究了基于高光谱成像技术进行柑橘冠层含氮量预测及可视化的可行性。实验采用高光谱成像光谱仪ImSpector V10E(Spectral imaging Ltd.,Oulu,Finland)分别采集柑橘叶片实验室样本和野外整个植株冠层的高光谱图像。利用ENVI软件提取每个叶片样本感兴趣区域(ROD的平均光谱数据作为整个样本的光谱数据进行分析,同时采用杜马斯燃烧法快速定氮仪(Elementar Analytical,Germany)测定叶片样本的含氮量。通过简单相关分析和双波段植被指数(TBVI)的获取,建立基于光谱数据的含氮量预测模型。计算表明,基于811和856nm的双波段植被指数(TBVI)能够建立最佳的柑橘叶片含氮量预测模型(R^2=0.607 1)。在此基础上,计算上述TBVI的冠层图像,把基于该TBVI的含氮量预测模型导入到TBVI图像中计算生成冠层含氮量的预测分布图。图中直观地显示柑橘嫩叶、中叶、老叶的含氮水平从高到低分布,实现了冠层含氮量的可视化。结果表明,利用高光谱成像技术可以实现柑橘冠层氮素水平的检测和诊断,这为实施基于每颗果树信息的变量施肥技术提供了参考信息。 展开更多
关键词 高光谱成像技术 养分可视化 双波段植被指数(tbvi) 温州蜜橘
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部