期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Robust Malicious Executable Detection Using Host-Based Machine Learning Classifier
1
作者 Khaled Soliman Mohamed Sobh Ayman M.Bahaa-Eldin 《Computers, Materials & Continua》 SCIE EI 2024年第4期1419-1439,共21页
The continuous development of cyberattacks is threatening digital transformation endeavors worldwide and leadsto wide losses for various organizations. These dangers have proven that signature-based approaches are ins... The continuous development of cyberattacks is threatening digital transformation endeavors worldwide and leadsto wide losses for various organizations. These dangers have proven that signature-based approaches are insufficientto prevent emerging and polymorphic attacks. Therefore, this paper is proposing a Robust Malicious ExecutableDetection (RMED) using Host-based Machine Learning Classifier to discover malicious Portable Executable (PE)files in hosts using Windows operating systems through collecting PE headers and applying machine learningmechanisms to detect unknown infected files. The authors have collected a novel reliable dataset containing 116,031benign files and 179,071 malware samples from diverse sources to ensure the efficiency of RMED approach.The most effective PE headers that can highly differentiate between benign and malware files were selected totrain the model on 15 PE features to speed up the classification process and achieve real-time detection formalicious executables. The evaluation results showed that RMED succeeded in shrinking the classification timeto 91 milliseconds for each file while reaching an accuracy of 98.42% with a false positive rate equal to 1.58. Inconclusion, this paper contributes to the field of cybersecurity by presenting a comprehensive framework thatleverages Artificial Intelligence (AI) methods to proactively detect and prevent cyber-attacks. 展开更多
关键词 Portable executable MALWARE intrusion detection CYBERSECURITY zero-day threats Host IntrusionDetection system(hids) machine learning Anomaly-based Intrusion Detection system(AIDS) deep learning
下载PDF
Linux环境下的日志分析系统LASL 被引量:2
2
作者 王全民 王蕊 赵钦 《北京工业大学学报》 CAS CSCD 北大核心 2005年第4期420-422,共3页
日志文件是计算机系统运行轨迹的写照,是入侵检测分析中重要的数据来源.日志分析主要用于入侵事件后采取相应的应急响应措施,最大可能地减少入侵造成的损失.LASL把传统的日志分析技术和移动Agent技术相结合,实现了Linux环境下的主机日... 日志文件是计算机系统运行轨迹的写照,是入侵检测分析中重要的数据来源.日志分析主要用于入侵事件后采取相应的应急响应措施,最大可能地减少入侵造成的损失.LASL把传统的日志分析技术和移动Agent技术相结合,实现了Linux环境下的主机日志分析系统,具有智能化、自动化和分布式的特点. 展开更多
关键词 基于主机的入侵检测系统 日志 LINUX 移动代理
下载PDF
基于NIDS入侵检测模型的研究和探讨 被引量:2
3
作者 蔡立斌 高兴锁 梅苏文 《现代计算机》 2003年第2期36-39,共4页
本文首先介绍入侵检测系统的基本原理,包括检测方法和分析技术,然后给出了一个网络入侵检测具体模型和事例,阐述了NIDS的重要性以及将来发展的趋势。
关键词 NIDS 入侵检测模型 计算机网络 网络安全 防火墙 主机入侵检测系统
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部