A class of regularized conjugate gradient methods is presented for solving the large sparse system of linear equations of which the coefficient matrix is an ill-conditioned symmetric positive definite matrix. The conv...A class of regularized conjugate gradient methods is presented for solving the large sparse system of linear equations of which the coefficient matrix is an ill-conditioned symmetric positive definite matrix. The convergence properties of these methods are discussed in depth, and the best possible choices of the parameters involved in the new methods are investigated in detail. Numerical computations show that the new methods are more efficient and robust than both classical relaxation methods and classical conjugate direction methods.展开更多
The symmetric,positive semidefinite,and positive definite real solutions of the matrix equation XA=YAD from an inverse problem of vibration theory are considered.When D=T the necessary and sufficient conditions fo...The symmetric,positive semidefinite,and positive definite real solutions of the matrix equation XA=YAD from an inverse problem of vibration theory are considered.When D=T the necessary and sufficient conditions for the existence of such solutions and their general forms are derived.展开更多
基金Subsidized by The Special Funds For Major State Basic Research Projects G1999032803.
文摘A class of regularized conjugate gradient methods is presented for solving the large sparse system of linear equations of which the coefficient matrix is an ill-conditioned symmetric positive definite matrix. The convergence properties of these methods are discussed in depth, and the best possible choices of the parameters involved in the new methods are investigated in detail. Numerical computations show that the new methods are more efficient and robust than both classical relaxation methods and classical conjugate direction methods.
文摘The symmetric,positive semidefinite,and positive definite real solutions of the matrix equation XA=YAD from an inverse problem of vibration theory are considered.When D=T the necessary and sufficient conditions for the existence of such solutions and their general forms are derived.