Fruit quality is the main factor determining market competitiveness;it represents the combination of fruit flavor,color,size,and the contents of aromatic and bioactive substances.Research on the genetic basis of fruit...Fruit quality is the main factor determining market competitiveness;it represents the combination of fruit flavor,color,size,and the contents of aromatic and bioactive substances.Research on the genetic basis of fruit quality can provide new information about fruit biology,promote genomic-assisted breeding,and provide technological support for the regulation of fruit quality via habitat selection and/or the control of environmental conditions.High-throughput sequencing is a powerful research method for studying fruit quality traits,and reference genome sequences for many important fruit crops have provided vast amounts of genomic data.To study fruit quality,it is important to select appropriate omics strategies and to analyze omics data meaningfully.Here,we summarize genomic mechanisms of fruit quality formation:gene duplication,transposable element insertion,structural variations and genome methylation in functional genes.We review the genomic,transcriptomic,and metabolomic strategies that have been used to study the genetic basis of fruit quality traits.We also describe some of the genes associated with fruit traits;these genes are a valuable resource for genomics-assisted breeding and are useful models for deciphering the mechanisms of agronomic traits,such as fruit color,size,hardness,aroma components,sugar and acid content.Finally,to maximize the application of omics information,we propose some further directions for research using omics strategies.展开更多
Foam flushing is an in situ soil remediation technology based on the traditional surfactant flushing method. The contribution of mobility control to contaminant removal by foam is helpful for improving this technology...Foam flushing is an in situ soil remediation technology based on the traditional surfactant flushing method. The contribution of mobility control to contaminant removal by foam is helpful for improving this technology. Foam flushing of polychlorinated biphenyl (PCB)- contaminated unconsolidated media was performed to evaluate the effect of the partition coefficient (PC) and sweep efficiency (SE) on PCB removal. Column flushing with surfactant solution and foam with different types and concentrations of surfactant was carried out for PCB removal. Two types of quartz sand were investigated to evaluate the Jamin effect on the SE value of the washing agent. The results demonstrate that a small PC value and large SE value are necessary to achieve high PCB removal for foam flushing. Compared with solution flushing, the introduction of foam can effectively control the mobility of the washing agent. Similar to solution flushing, solubilization is a key factor which dominates the removal of PCBs in foam flushing, In addition, the SE value and PCB removal by foam flushing is less affected by particle size. Therefore, foam flushing was proved to be more effective in porous media with low hydraulic conductivity and high porosity. An integrated flushing with water, surfactant solution and foam was performed and the results prove that this technology successfully combines the advantages of solution solubilization and mobility control by foam, and thus further increases the remediation efficiency of PCBs to 94.7% for coarse sand.展开更多
Drinking water treatment sludge,characterized as accumulated suspended solids and organic and inorganic matter,is produced in large quantities during the coagulation process.The proper disposal,regeneration or reuse o...Drinking water treatment sludge,characterized as accumulated suspended solids and organic and inorganic matter,is produced in large quantities during the coagulation process.The proper disposal,regeneration or reuse of sludge is,therefore,a significant environmental issue.Reused sludge at low temperatures is an alternative method to enhance traditional coagulation efficiency.In the present study,the recycling mass of mixed sludge and properties of raw water (such as pH and turbidity) were systematically investigated to optimize coagulation efficiency.We determined that the appropriate dosage of mixed sludge was 60 mL/L,effective initial turbidity ranges were below 45.0 NTU,and optimal pH for DOMs and turbidity removal was 6.5-7.0 and 8.0,respectively.Furthermore,by comparing the flocs characteristics with and without recycling sludge,we found that floc structures with sludge were more irregular with average size growth to 64.7 μm from 48.1 μm.Recycling sludge was a feasible and successful method for enhancing pollutants removal,and the more irregular flocs structure after recycling might be caused by breakage of reused flocs and incorporation of powdered activated carbon into larger flocs structure.Applied during the coagulation process,recycling sludge could be significant for the treatment of low temperature and micro-polluted source water.展开更多
Rapeseed (Brassica napus),an important oilseed crop,has adapted to diverse climate zones and latitudes by forming three main ecotype groups,namely winter,semiwinter,and spring types. However,genetic variations underly...Rapeseed (Brassica napus),an important oilseed crop,has adapted to diverse climate zones and latitudes by forming three main ecotype groups,namely winter,semiwinter,and spring types. However,genetic variations underlying the divergence of these ecotypes are largely unknown. Here,we report the global pattern of genetic polymorphisms in rapeseed determined by resequencing a worldwide collection of 991 germplasm accessions.A total of 5.56 and 5.53 million singlenucleotide polymorphisms (SNPs)as Well as 1.86 and 1.92 million InDels were identified by mapping reads to the reference genomes of "Darmor-bzh"and "Tapidor,"respectively.We generated a map of allelic drift paths that shows splits and mixtures of the main populations,and revealed an asymmetric evolution of the two subgenomes of B.napus by calculating the genetic diversity and linkage disequilibrium parameters.Selective-sweep analysis revealed genetic changes in genes orthologous to those regulating various aspects of plant development and response to stresses.A genome-wide association study identified SNPs in the promoter regions of FLOWERING LOCUS T and FLOWERING LOCUS C orthologs that corresponded to the different rapeseed ecotype groups. Our study provides important insights into the genomic footprints of rapeseed evolution and flowering-time divergence among three ecotype groups,and will facilitate screening of molecular markers for accelerating rapeseed breeding.展开更多
Coagulation mechanisms of polyaluminum chloride(PACl) at various dosages were studied using a conventional jar test at different final and initial pH values during treating kaolin suspension. The optimal final pH and ...Coagulation mechanisms of polyaluminum chloride(PACl) at various dosages were studied using a conventional jar test at different final and initial pH values during treating kaolin suspension. The optimal final pH and dosages for PACl were obtained based on residual turbidity and zeta potential of flocs. The coagulation zones at various PACl dosages and solution p H values were developed and compared with those of alum. It is found that the optimal mechanism under acidic condition is charge neutralization, while alkaline condition will facilitate the coagulation of PACl. Both charge neutralization coagulation and sweep coagulation can achieve high coagulation efficiency under the alkaline condition ranging from final p H 7.0 to 10.0. Stabilization, charge neutralization destabilization, restabilization and sweep zones occur successively with increasing PACl dosages with the final p H values fixed at 7.0 and 8.0, but restabilization zone disappears at final p H 10.0. When the final p H is not controlled and consequently decreases with increasing PACl dosage, no typical sweep zone can be observed and the coagulant efficiency decreases at high PACl dosage. It seems that the final pH is more meaningful than the initial p H for coagulation. Charge neutralization coagulation efficiency is dominated by zeta potential of flocs and PACl precipitates. The charge neutralization and sweep coagulation zones of PACl are broader in the ranges of coagulant dosage and p H than those of alum. The results are helpful for us to treat water and wastewater using PACl and to understand the coagulation process of PACl.展开更多
A method for the fast measurement of electron temperature and density with temporal resolution in transient plasma has been implemented by Langmuir probe. The diagnostic system consists of a single Lang- muir probe dr...A method for the fast measurement of electron temperature and density with temporal resolution in transient plasma has been implemented by Langmuir probe. The diagnostic system consists of a single Lang- muir probe driven by a high frequency sinusoidal voltage. The current and voltage spectrum on the probe were detected synchronously by an oscilloscope with sampling rate being at least 5 times higher than the frequency of sweep voltage. The system has been used to diagnose the transient plasma generated by hypervelocity-impact of LY12 aluminum projectile into LY12 aluminum target.展开更多
Gravity dam is a typical structure that has been frequently used in the fields of water conservancy engineering, and the safety of the structure has received widespread attention recently. Due to earthquakes or other ...Gravity dam is a typical structure that has been frequently used in the fields of water conservancy engineering, and the safety of the structure has received widespread attention recently. Due to earthquakes or other reasons, gravity dams normally have damage such as cracks in practical service. Damage in the structures can alter the structural dynamic behavior and seriously affect structural performance. Maintaining safety and integrity of the gravity dam structures requires a better understanding of dynamic response of structure with damage and associated damage detection method. In order to study thoroughly the dynamic behavior of gravity dam with damage, the sweep vibration responses of the gravity dam with and without damage are investigated. The experimental results show that the peak-peak acceleration responses all increase for the structure is with crack. At the same time, a structural damage detection method, i.e., the local damage factor (LDF) method, is considered in the study of gravity dam damage detection when the dam is subjected to the base excitation. It is shown that the LDF method can be used as a damage index and is capable of evaluating both the presence and relative severity of structural damage, and it can be used as a viable condition assessment and damage identification technique to detect and quantify the damage in the gravity dam.展开更多
CO2 flooding is regarded as an important method for enhanced oil recovery (EOR) and greenhouse gas control. However, the heterogeneity prevalently dis- tributed in reservoirs inhibits the performance of this technol...CO2 flooding is regarded as an important method for enhanced oil recovery (EOR) and greenhouse gas control. However, the heterogeneity prevalently dis- tributed in reservoirs inhibits the performance of this technology. The sweep efficiency can be significantly reduced especially in the presence of "thief zones". Hence, gas channeling blocking and mobility control are important technical issues for the success of CO2 injection. Normally, crosslinked gels have the potential to block gas channels, but the gelation time control poses challenges to this method. In this study, a new method for selectively blocking CO2 channeling is proposed, which is based on a type of CO2-sensitive gel system (modified polyacry- lamide-methenamine-resorcinol gel system) to form gel in situ. A CO2-sensitive gel system is when gelation or solidification will be triggered by CO2 in the reservoir to block gas channels. The CO2-sensitivity of the gel system was demonstrated in parallel bottle tests of gel in N2 and CO2 atmospheres. Sand pack flow experiments were con- ducted to investigate the shutoff capacity of the gel system under different conditions. The injectivity of the gel system was studied via viscosity measurements. The results indi- cate that this gel system was sensitive to CO2 and had good performance of channeling blocking in porous media. Advantageous viscosity-temperature characteristics were achieved in this work. The effectiveness for EOR in heterogeneous formations based on this gel system was demonstrated using displacement tests conducted in double sand packs. The experimental results can provide guideli- nes for the deployment of theCO2-sensitive gel system for field applications.展开更多
Swept blades have been widely used in the transonic fan/compressor of aircraft engines with the aids of 3D CFD simulation since the design concept of controlling the shock structure was firstly proposed and successful...Swept blades have been widely used in the transonic fan/compressor of aircraft engines with the aids of 3D CFD simulation since the design concept of controlling the shock structure was firstly proposed and successfully tested by Dr.Wennerstrom in the 1980s.However,some disadvantage phenomenon has also been induced by excessively 3D blade geometries on the structure stress insufficiency,vibration and reliability.Much confusion in the procedure of design practice leading us to recognize a new view on the flow mechanism of sweep aerodynamical induction: the new radial equilibrium established by the influence of inlet circumferential fluctuation(CF) changes the inlet flows of blading and induces the performance modification of axial fans/compressors blade.The view is verified by simplified models through numerical simulation and circumferentially averaged analysis in the present paper.The results show that the CF source items which originate from design parameters,such as the spanwise distributions of the loading and blading geometries,contribute to the changing of averaged incidence spanwise distribution,and further more affect the performance of axial fans/compressors with swept blades.展开更多
This paper presents comparative numerical studies to investigate the effects of blade sweep on inlet flow in axial compressor cascades. A series of swept and straight cascades was modeled in order to obtain a general ...This paper presents comparative numerical studies to investigate the effects of blade sweep on inlet flow in axial compressor cascades. A series of swept and straight cascades was modeled in order to obtain a general understanding of the inlet flow field that is induced by sweep.A computational fluid dynamics(CFD) package was used to simulate the cascades and obtain the required three-dimensional(3D) flow parameters. A circumferentially averaged method was introduced which provided the circumferential fluctuation(CF) terms in the momentum equation.A program for data reduction was conducted to obtain a circumferentially averaged flow field.The influences of the inlet flow fields of the cascades were studied and spanwise distributions of each term in the momentum equation were analyzed. The results indicate that blade sweep does affect inlet radial equilibrium. The characteristic of radial fluid transfer is changed and thus influencing the axial velocity distributions. The inlet flow field varies mainly due to the combined effect of the radial pressure gradient and the CF component. The axial velocity varies consistently with the incidence variation induced by the sweep, as observed in the previous literature. In addition, factors that might influence the radial equilibrium such as blade camber angles, solidity and the effect of the distance from the leading edge are also taken into consideration and comparatively analyzed.展开更多
Source-generated energy in seismic vibrator records high frequency harmonic behavior. Conventional vibrator-earth coupling model was set up on the linear system. Some assumptions in the application of linear theory to...Source-generated energy in seismic vibrator records high frequency harmonic behavior. Conventional vibrator-earth coupling model was set up on the linear system. Some assumptions in the application of linear theory to the vibrator problem play an insignificant role in the overall coupling structure. Obviously, non-linear behaviors can be modeled using a “hard-spring” form of the Duffing equation. Model dedicates that a qualitatively similar harmonic component is present for a broad range of possible mathematical descriptions. After some qualitative analysis about the non-linear system, some conclusion can be drawn. Firstly, The design of the vibrator weight should be abided by two points as followed: In order to avoid decoupling for the vibrator to the earth, the weight should be greater than the peak of the driving force amplitude as to keep the resultant force pointing to the earth’s core. On the other hand, for the limited energy output, the vibrator overweight may damage the system high-frequency ability.Secondly, as the driving force frequency approaching to the ground hard-spring inherent frequency, the energy transmission was found to climb its peak from the system energy absorbed curve. At last, due to the non-linear coupling model system, its load curve would come into unstable frequency range, which might limit the application of the Vibroseis conventional sweeping pattern-linear sweep. A new sweeping pattern was listed: the driving signal was the pseudo-random sequence modulated by a fixed frequency cosine signal satisfying with the exploration precision and absorbing efficiency. The synthesized signal was ready to be realized by the electromagnetic driven system. Even the side-lobes noise of its auto-correlation function was restrained well. The theory coming from the Vibrator-earth coupling model was applied to the design of the Portable High-frequency Vibrator System (PHVS), and the good result was obtained. By the analysis of the vibrator base plate signal, the model was proved to be true. Th展开更多
A finite volume method for the numerical solution of viscoelastic flows is given. The flow of a differential Upper-Convected Maxwell (UCM) fluid through an abrupt expansion has been chosen as a prototype example. Th...A finite volume method for the numerical solution of viscoelastic flows is given. The flow of a differential Upper-Convected Maxwell (UCM) fluid through an abrupt expansion has been chosen as a prototype example. The conservation and constitutive equations are solved using the Finite Volume Method (FVM) in a staggered grid with an upwind scheme for the viscoelastic stresses and a hybrid scheme for the velocities. An enhanced-in-speed pressure-correction algorithm is used and a method for handling the source term in the momentum equations is employed. Improved accuracy is achieved by a special discretization of the boundary conditions. Stable solutions are obtained for higher Weissenberg number (We), further extending the range of simulations with the FVM. Numerical results show the viscoelasticity of polymer solutions is the main factor influencing the sweeo efficiency.展开更多
基金This work was supported by the National Key Research and Development Program of China(Grant No.2018YFD1000200)the Chinese National Natural Science Foundation(Grant No.31800573)+1 种基金the China Postdoctoral Science Foundation(Grant No.2019M662416)We thank Jennifer Smith,PhD,from Liwen Bianji,Edanz Group China(www.liwenbianji.cn/ac),for editing the English text of a draft of this manuscript.
文摘Fruit quality is the main factor determining market competitiveness;it represents the combination of fruit flavor,color,size,and the contents of aromatic and bioactive substances.Research on the genetic basis of fruit quality can provide new information about fruit biology,promote genomic-assisted breeding,and provide technological support for the regulation of fruit quality via habitat selection and/or the control of environmental conditions.High-throughput sequencing is a powerful research method for studying fruit quality traits,and reference genome sequences for many important fruit crops have provided vast amounts of genomic data.To study fruit quality,it is important to select appropriate omics strategies and to analyze omics data meaningfully.Here,we summarize genomic mechanisms of fruit quality formation:gene duplication,transposable element insertion,structural variations and genome methylation in functional genes.We review the genomic,transcriptomic,and metabolomic strategies that have been used to study the genetic basis of fruit quality traits.We also describe some of the genes associated with fruit traits;these genes are a valuable resource for genomics-assisted breeding and are useful models for deciphering the mechanisms of agronomic traits,such as fruit color,size,hardness,aroma components,sugar and acid content.Finally,to maximize the application of omics information,we propose some further directions for research using omics strategies.
基金supported by the National Natural Science Foundation of China (No. 40772148)
文摘Foam flushing is an in situ soil remediation technology based on the traditional surfactant flushing method. The contribution of mobility control to contaminant removal by foam is helpful for improving this technology. Foam flushing of polychlorinated biphenyl (PCB)- contaminated unconsolidated media was performed to evaluate the effect of the partition coefficient (PC) and sweep efficiency (SE) on PCB removal. Column flushing with surfactant solution and foam with different types and concentrations of surfactant was carried out for PCB removal. Two types of quartz sand were investigated to evaluate the Jamin effect on the SE value of the washing agent. The results demonstrate that a small PC value and large SE value are necessary to achieve high PCB removal for foam flushing. Compared with solution flushing, the introduction of foam can effectively control the mobility of the washing agent. Similar to solution flushing, solubilization is a key factor which dominates the removal of PCBs in foam flushing, In addition, the SE value and PCB removal by foam flushing is less affected by particle size. Therefore, foam flushing was proved to be more effective in porous media with low hydraulic conductivity and high porosity. An integrated flushing with water, surfactant solution and foam was performed and the results prove that this technology successfully combines the advantages of solution solubilization and mobility control by foam, and thus further increases the remediation efficiency of PCBs to 94.7% for coarse sand.
基金supported by the Important Project of Science and Technology for Water Pollution Control and Treatment (No:2009ZX07424-005-01)
文摘Drinking water treatment sludge,characterized as accumulated suspended solids and organic and inorganic matter,is produced in large quantities during the coagulation process.The proper disposal,regeneration or reuse of sludge is,therefore,a significant environmental issue.Reused sludge at low temperatures is an alternative method to enhance traditional coagulation efficiency.In the present study,the recycling mass of mixed sludge and properties of raw water (such as pH and turbidity) were systematically investigated to optimize coagulation efficiency.We determined that the appropriate dosage of mixed sludge was 60 mL/L,effective initial turbidity ranges were below 45.0 NTU,and optimal pH for DOMs and turbidity removal was 6.5-7.0 and 8.0,respectively.Furthermore,by comparing the flocs characteristics with and without recycling sludge,we found that floc structures with sludge were more irregular with average size growth to 64.7 μm from 48.1 μm.Recycling sludge was a feasible and successful method for enhancing pollutants removal,and the more irregular flocs structure after recycling might be caused by breakage of reused flocs and incorporation of powdered activated carbon into larger flocs structure.Applied during the coagulation process,recycling sludge could be significant for the treatment of low temperature and micro-polluted source water.
基金the National Key Basic Research Project (no. 2015CB150205)Natural Science Foundation of China,China (no. 31671597,31370313,31670283)+1 种基金Sino-German Science Center for Research Promotion,China (GZ 1099)Jiangsu Collaborative Innovation Center for Modern Crop Production,China,and the Singapore National Research Foundation Investigatorship Program,Singapore (NRF-NRFI2016-02).
文摘Rapeseed (Brassica napus),an important oilseed crop,has adapted to diverse climate zones and latitudes by forming three main ecotype groups,namely winter,semiwinter,and spring types. However,genetic variations underlying the divergence of these ecotypes are largely unknown. Here,we report the global pattern of genetic polymorphisms in rapeseed determined by resequencing a worldwide collection of 991 germplasm accessions.A total of 5.56 and 5.53 million singlenucleotide polymorphisms (SNPs)as Well as 1.86 and 1.92 million InDels were identified by mapping reads to the reference genomes of "Darmor-bzh"and "Tapidor,"respectively.We generated a map of allelic drift paths that shows splits and mixtures of the main populations,and revealed an asymmetric evolution of the two subgenomes of B.napus by calculating the genetic diversity and linkage disequilibrium parameters.Selective-sweep analysis revealed genetic changes in genes orthologous to those regulating various aspects of plant development and response to stresses.A genome-wide association study identified SNPs in the promoter regions of FLOWERING LOCUS T and FLOWERING LOCUS C orthologs that corresponded to the different rapeseed ecotype groups. Our study provides important insights into the genomic footprints of rapeseed evolution and flowering-time divergence among three ecotype groups,and will facilitate screening of molecular markers for accelerating rapeseed breeding.
基金Supported by the Special Funds of Technological Development for Scientific Research Institutes from the Ministry of Science and Technology of China(2010EG111022,2011EG111307,2012EG111122)the Program for Overseas Talents(OTP-2013-015)the Program for Innovative Research Team(IG201204N)from Beijing Academy of Science and Technology
文摘Coagulation mechanisms of polyaluminum chloride(PACl) at various dosages were studied using a conventional jar test at different final and initial pH values during treating kaolin suspension. The optimal final pH and dosages for PACl were obtained based on residual turbidity and zeta potential of flocs. The coagulation zones at various PACl dosages and solution p H values were developed and compared with those of alum. It is found that the optimal mechanism under acidic condition is charge neutralization, while alkaline condition will facilitate the coagulation of PACl. Both charge neutralization coagulation and sweep coagulation can achieve high coagulation efficiency under the alkaline condition ranging from final p H 7.0 to 10.0. Stabilization, charge neutralization destabilization, restabilization and sweep zones occur successively with increasing PACl dosages with the final p H values fixed at 7.0 and 8.0, but restabilization zone disappears at final p H 10.0. When the final p H is not controlled and consequently decreases with increasing PACl dosage, no typical sweep zone can be observed and the coagulant efficiency decreases at high PACl dosage. It seems that the final pH is more meaningful than the initial p H for coagulation. Charge neutralization coagulation efficiency is dominated by zeta potential of flocs and PACl precipitates. The charge neutralization and sweep coagulation zones of PACl are broader in the ranges of coagulant dosage and p H than those of alum. The results are helpful for us to treat water and wastewater using PACl and to understand the coagulation process of PACl.
文摘A method for the fast measurement of electron temperature and density with temporal resolution in transient plasma has been implemented by Langmuir probe. The diagnostic system consists of a single Lang- muir probe driven by a high frequency sinusoidal voltage. The current and voltage spectrum on the probe were detected synchronously by an oscilloscope with sampling rate being at least 5 times higher than the frequency of sweep voltage. The system has been used to diagnose the transient plasma generated by hypervelocity-impact of LY12 aluminum projectile into LY12 aluminum target.
基金supported by the National Basic Research Program of China ("973"Project)(Grant No. 2007CB714104)
文摘Gravity dam is a typical structure that has been frequently used in the fields of water conservancy engineering, and the safety of the structure has received widespread attention recently. Due to earthquakes or other reasons, gravity dams normally have damage such as cracks in practical service. Damage in the structures can alter the structural dynamic behavior and seriously affect structural performance. Maintaining safety and integrity of the gravity dam structures requires a better understanding of dynamic response of structure with damage and associated damage detection method. In order to study thoroughly the dynamic behavior of gravity dam with damage, the sweep vibration responses of the gravity dam with and without damage are investigated. The experimental results show that the peak-peak acceleration responses all increase for the structure is with crack. At the same time, a structural damage detection method, i.e., the local damage factor (LDF) method, is considered in the study of gravity dam damage detection when the dam is subjected to the base excitation. It is shown that the LDF method can be used as a damage index and is capable of evaluating both the presence and relative severity of structural damage, and it can be used as a viable condition assessment and damage identification technique to detect and quantify the damage in the gravity dam.
基金financial support from the National Basic Research Program of China(2015CB251201)the Fundamental Research Funds for the Central Universities(15CX06024A)the Program for Changjiang Scholars and Innovative Research Team in University(IRT1294 and IRT1086)
文摘CO2 flooding is regarded as an important method for enhanced oil recovery (EOR) and greenhouse gas control. However, the heterogeneity prevalently dis- tributed in reservoirs inhibits the performance of this technology. The sweep efficiency can be significantly reduced especially in the presence of "thief zones". Hence, gas channeling blocking and mobility control are important technical issues for the success of CO2 injection. Normally, crosslinked gels have the potential to block gas channels, but the gelation time control poses challenges to this method. In this study, a new method for selectively blocking CO2 channeling is proposed, which is based on a type of CO2-sensitive gel system (modified polyacry- lamide-methenamine-resorcinol gel system) to form gel in situ. A CO2-sensitive gel system is when gelation or solidification will be triggered by CO2 in the reservoir to block gas channels. The CO2-sensitivity of the gel system was demonstrated in parallel bottle tests of gel in N2 and CO2 atmospheres. Sand pack flow experiments were con- ducted to investigate the shutoff capacity of the gel system under different conditions. The injectivity of the gel system was studied via viscosity measurements. The results indi- cate that this gel system was sensitive to CO2 and had good performance of channeling blocking in porous media. Advantageous viscosity-temperature characteristics were achieved in this work. The effectiveness for EOR in heterogeneous formations based on this gel system was demonstrated using displacement tests conducted in double sand packs. The experimental results can provide guideli- nes for the deployment of theCO2-sensitive gel system for field applications.
基金Financially supported by National Natural Science Foundation of China(grant number:51236001)
文摘Swept blades have been widely used in the transonic fan/compressor of aircraft engines with the aids of 3D CFD simulation since the design concept of controlling the shock structure was firstly proposed and successfully tested by Dr.Wennerstrom in the 1980s.However,some disadvantage phenomenon has also been induced by excessively 3D blade geometries on the structure stress insufficiency,vibration and reliability.Much confusion in the procedure of design practice leading us to recognize a new view on the flow mechanism of sweep aerodynamical induction: the new radial equilibrium established by the influence of inlet circumferential fluctuation(CF) changes the inlet flows of blading and induces the performance modification of axial fans/compressors blade.The view is verified by simplified models through numerical simulation and circumferentially averaged analysis in the present paper.The results show that the CF source items which originate from design parameters,such as the spanwise distributions of the loading and blading geometries,contribute to the changing of averaged incidence spanwise distribution,and further more affect the performance of axial fans/compressors with swept blades.
基金support of the National Natural Science Foundation of China(Grant Nos:51236001,51006005)
文摘This paper presents comparative numerical studies to investigate the effects of blade sweep on inlet flow in axial compressor cascades. A series of swept and straight cascades was modeled in order to obtain a general understanding of the inlet flow field that is induced by sweep.A computational fluid dynamics(CFD) package was used to simulate the cascades and obtain the required three-dimensional(3D) flow parameters. A circumferentially averaged method was introduced which provided the circumferential fluctuation(CF) terms in the momentum equation.A program for data reduction was conducted to obtain a circumferentially averaged flow field.The influences of the inlet flow fields of the cascades were studied and spanwise distributions of each term in the momentum equation were analyzed. The results indicate that blade sweep does affect inlet radial equilibrium. The characteristic of radial fluid transfer is changed and thus influencing the axial velocity distributions. The inlet flow field varies mainly due to the combined effect of the radial pressure gradient and the CF component. The axial velocity varies consistently with the incidence variation induced by the sweep, as observed in the previous literature. In addition, factors that might influence the radial equilibrium such as blade camber angles, solidity and the effect of the distance from the leading edge are also taken into consideration and comparatively analyzed.
文摘Source-generated energy in seismic vibrator records high frequency harmonic behavior. Conventional vibrator-earth coupling model was set up on the linear system. Some assumptions in the application of linear theory to the vibrator problem play an insignificant role in the overall coupling structure. Obviously, non-linear behaviors can be modeled using a “hard-spring” form of the Duffing equation. Model dedicates that a qualitatively similar harmonic component is present for a broad range of possible mathematical descriptions. After some qualitative analysis about the non-linear system, some conclusion can be drawn. Firstly, The design of the vibrator weight should be abided by two points as followed: In order to avoid decoupling for the vibrator to the earth, the weight should be greater than the peak of the driving force amplitude as to keep the resultant force pointing to the earth’s core. On the other hand, for the limited energy output, the vibrator overweight may damage the system high-frequency ability.Secondly, as the driving force frequency approaching to the ground hard-spring inherent frequency, the energy transmission was found to climb its peak from the system energy absorbed curve. At last, due to the non-linear coupling model system, its load curve would come into unstable frequency range, which might limit the application of the Vibroseis conventional sweeping pattern-linear sweep. A new sweeping pattern was listed: the driving signal was the pseudo-random sequence modulated by a fixed frequency cosine signal satisfying with the exploration precision and absorbing efficiency. The synthesized signal was ready to be realized by the electromagnetic driven system. Even the side-lobes noise of its auto-correlation function was restrained well. The theory coming from the Vibrator-earth coupling model was applied to the design of the Portable High-frequency Vibrator System (PHVS), and the good result was obtained. By the analysis of the vibrator base plate signal, the model was proved to be true. Th
基金supported by the National Basic Research Program of China (973 Program, Grant No. 2005CB221304)the Scientific Research Project of the Heilongjiang Education Department (Grant No.11521003)the Graduate Innovation Scientific Research Funds Project of Heilongjiang (Grant No.YJSCX2008-047HLJ)
文摘A finite volume method for the numerical solution of viscoelastic flows is given. The flow of a differential Upper-Convected Maxwell (UCM) fluid through an abrupt expansion has been chosen as a prototype example. The conservation and constitutive equations are solved using the Finite Volume Method (FVM) in a staggered grid with an upwind scheme for the viscoelastic stresses and a hybrid scheme for the velocities. An enhanced-in-speed pressure-correction algorithm is used and a method for handling the source term in the momentum equations is employed. Improved accuracy is achieved by a special discretization of the boundary conditions. Stable solutions are obtained for higher Weissenberg number (We), further extending the range of simulations with the FVM. Numerical results show the viscoelasticity of polymer solutions is the main factor influencing the sweeo efficiency.