This study utilizes the 62208000 Swarm satellite data to establish a high-precision main magnetic field at the height of the satellites in China and its adjacent regions.The CHAOS-6 model is used to remove the crustal...This study utilizes the 62208000 Swarm satellite data to establish a high-precision main magnetic field at the height of the satellites in China and its adjacent regions.The CHAOS-6 model is used to remove the crustal and external fields and obtain 2788 main field grid data.We use the main field grid data to build a three-dimensional(3D)surface spline(3DSS)model of the satellite altitude in China.Other regional models(namely the 3D,two-dimensional(2D)Taylor,and 2D surface spline models)and the CHAOS-6 model are employed to model and analyze the same region.The results show that the 3DSS model can represent a good fi tting for the northward(X)and eastward(Y)components and the total intensity(F).This model demonstrates the most stable results for the 20 points that did not take part in the modeling.Compared with the other three regional models,the root–mean–square error values and the average residuals of the new model are approximately 65%and 69%lower for each component,respectively.This study does not rely on ground station data to derive a more accurate regional main fi eld model.The results further show that less data height difference and high-density data distributions greatly improve the regional model accuracy.The new model has a certain application value to related space geophysics,such as in spatial positioning and navigation,and to the study of regional magnetic anomalies.展开更多
基金the Special Fund of the Hubei Luojia Laboratory(Grant No.220100011)the National Key R&D Program of China(Grant No.2022YFF0503700)+1 种基金the Dragon-5 Cooperation 2020-2024(Project No.59236)the International Space Science Institute(ISSI)in Bern and Beijing through ISSI International Team Project#511(Multi-Scale Magnetosphere-Ionosphere-Thermosphere Interaction).
基金supported by the National Natural Science Foundation of China (Nos. 42030203, 41974073, and 41404053)
文摘This study utilizes the 62208000 Swarm satellite data to establish a high-precision main magnetic field at the height of the satellites in China and its adjacent regions.The CHAOS-6 model is used to remove the crustal and external fields and obtain 2788 main field grid data.We use the main field grid data to build a three-dimensional(3D)surface spline(3DSS)model of the satellite altitude in China.Other regional models(namely the 3D,two-dimensional(2D)Taylor,and 2D surface spline models)and the CHAOS-6 model are employed to model and analyze the same region.The results show that the 3DSS model can represent a good fi tting for the northward(X)and eastward(Y)components and the total intensity(F).This model demonstrates the most stable results for the 20 points that did not take part in the modeling.Compared with the other three regional models,the root–mean–square error values and the average residuals of the new model are approximately 65%and 69%lower for each component,respectively.This study does not rely on ground station data to derive a more accurate regional main fi eld model.The results further show that less data height difference and high-density data distributions greatly improve the regional model accuracy.The new model has a certain application value to related space geophysics,such as in spatial positioning and navigation,and to the study of regional magnetic anomalies.
基金funded by NERC grant NE/M012190/1, China Scholarship Council (No. 201708320317)National Natural Science Foundation of China (Grant No. 41974073, Grant No. 41404053, Grant No. 41604134, Grant No. 41174165, Grant No. 41974073)+3 种基金Special Project for Meteo-scientific Research in the Public Interest (Grant No. GYHY201306073-2)Macao Foundation and the pre-research project on Civil Aerospace Technologies No. D020308 and D020303 funded by China’s National Space Administrationopening fund of State Key Laboratory of Lunar and Planetary Sciences (Macao University of Science and Technology) (Macao FDCT grant No. 119/2017/A3)the Specialized Research Fund for State Key Laboratory of Space Weather, Graduate Research and Practice Innovation Program (KYCX17_0896),the Specialized Research Fund for State Key Laboratory of Space Weather