The successful completion of the Zhengzhou-Xi'an high-speed railway project has greatly improved the construction level of China's large-section loess tunnels, and has resulted in significant progress being made in ...The successful completion of the Zhengzhou-Xi'an high-speed railway project has greatly improved the construction level of China's large-section loess tunnels, and has resulted in significant progress being made in both design theory and construction technology. This paper systematically summarizes the tech- nical characteristics and main problems of the large-section loess tunnels on China's high-speed railway, including classification of the surrounding rock, design of the supporting structure, surface settlement and cracking control, and safe and rapid construction methods. On this basis, the key construction tech- niques of loess tunnels with large sections for high-speed railway are expounded from the aspects of design and construction. The research results show that the classification of loess strata surrounding large tunnels should be based on the geological age of the loess, and be determined by combining the plastic index and the water content. In addition, the influence of the buried depth should be considered. During tunnel excavation disturbance, if the tensile stress exceeds the soil tensile or shear strength, the surface part of the sliding trend plane can be damaged, and visible cracks can form. The pressure of the surrounding rock of a large-section loess tunnel should be calculated according to the buried depth, using the corresponding formula. A three-bench seven-step excavation method of construction was used as the core technology system to ensure the safe and rapid construction of a large-section loess tunnel, following a field test to optimize the construction parameters and determine the engineering measures to stabilize the tunnel face. The conclusions and methods presented here are of great significance in revealing the strata and supporting mechanics of large-section loess tunnels, and in optimizing the supporting structure design and the technical parameters for construction.展开更多
To determine the influence of key blasthole parameters on tunnel overbreak during blasting construction,an intelligent detection sys-tem for tunnel blasting construction is independently developed.And the key blasthol...To determine the influence of key blasthole parameters on tunnel overbreak during blasting construction,an intelligent detection sys-tem for tunnel blasting construction is independently developed.And the key blasthole parameters and overbreak of a typical section of a single line tunnel under the condition of Class V surrounding rock are analyzed and detected.The actual data obtained is compared with the results of numerical simulations and theoretical calculations.The results are as follows:(1)Quantitative analysis is performed based on the blasthole angle,opening position,and charge mass by the self-developed intelligent detection equipment for blasthole parameters,which can be used to guide the drilling construction.Intelligent scanning equipment for outline excavation can be used to image the actual excavation section in real-time and has the advantages of high precision and fast speed;(2)Tunnel overbreak can be regarded as consisting of two parts:the surrounding rock damage caused by the blasting load,and the collapse of the surrounding rock caused by the blasthole opening position.Every parameter of the peripheral hole will affect the tunnel overbreak;however,the key parameter is the blasthole opening position;(3)The distributions of the tunnel overbreak volume obtained with the theoretical analysis,finite element simulation,and measurements are basically consistent.Under the condition of Class V surrounding rock,the overbreak of this single line tunnel can reach 14.1–78.2 cm.To meet the specification requirements,the opening position and construction accuracy of the peripheral hole should be strictly controlled.展开更多
文摘The successful completion of the Zhengzhou-Xi'an high-speed railway project has greatly improved the construction level of China's large-section loess tunnels, and has resulted in significant progress being made in both design theory and construction technology. This paper systematically summarizes the tech- nical characteristics and main problems of the large-section loess tunnels on China's high-speed railway, including classification of the surrounding rock, design of the supporting structure, surface settlement and cracking control, and safe and rapid construction methods. On this basis, the key construction tech- niques of loess tunnels with large sections for high-speed railway are expounded from the aspects of design and construction. The research results show that the classification of loess strata surrounding large tunnels should be based on the geological age of the loess, and be determined by combining the plastic index and the water content. In addition, the influence of the buried depth should be considered. During tunnel excavation disturbance, if the tensile stress exceeds the soil tensile or shear strength, the surface part of the sliding trend plane can be damaged, and visible cracks can form. The pressure of the surrounding rock of a large-section loess tunnel should be calculated according to the buried depth, using the corresponding formula. A three-bench seven-step excavation method of construction was used as the core technology system to ensure the safe and rapid construction of a large-section loess tunnel, following a field test to optimize the construction parameters and determine the engineering measures to stabilize the tunnel face. The conclusions and methods presented here are of great significance in revealing the strata and supporting mechanics of large-section loess tunnels, and in optimizing the supporting structure design and the technical parameters for construction.
基金supported by the Open-end Fund of Key Laboratory of New Technology for Construction of Cities in Mountain Area(LNTCCMA-20210108)the National Natural Science Foundation of China(5108098,51908387)+6 种基金the Chongqing Municipal Construction Investment(Group)Co.,Ltd.Joint Technical Issues(CQCT-JSA-GC-2021-0138)the Chongqing Natural Science Fund General Project(cstc2020jcyj-msxmX0904)the Chongqing Talents:Exceptional Young Talents Project(cstc2021ycjh-bgzxm0246)the China Postdoctoral Science Foundation-General Project(2021M693739)the Chongqing Outstanding Youth Science Fund Project(2022NSCQ-JQX1224)the Chongqing University of Science&Technology Graduate Innovation Program Project(YKJCX2120613)the Special Funding for Postdoctoral Research Projects in Chongqing(2021XM2019).
文摘To determine the influence of key blasthole parameters on tunnel overbreak during blasting construction,an intelligent detection sys-tem for tunnel blasting construction is independently developed.And the key blasthole parameters and overbreak of a typical section of a single line tunnel under the condition of Class V surrounding rock are analyzed and detected.The actual data obtained is compared with the results of numerical simulations and theoretical calculations.The results are as follows:(1)Quantitative analysis is performed based on the blasthole angle,opening position,and charge mass by the self-developed intelligent detection equipment for blasthole parameters,which can be used to guide the drilling construction.Intelligent scanning equipment for outline excavation can be used to image the actual excavation section in real-time and has the advantages of high precision and fast speed;(2)Tunnel overbreak can be regarded as consisting of two parts:the surrounding rock damage caused by the blasting load,and the collapse of the surrounding rock caused by the blasthole opening position.Every parameter of the peripheral hole will affect the tunnel overbreak;however,the key parameter is the blasthole opening position;(3)The distributions of the tunnel overbreak volume obtained with the theoretical analysis,finite element simulation,and measurements are basically consistent.Under the condition of Class V surrounding rock,the overbreak of this single line tunnel can reach 14.1–78.2 cm.To meet the specification requirements,the opening position and construction accuracy of the peripheral hole should be strictly controlled.