An overview of recent researches of surface plasmon resonance (SPR) sensing technology in Laboratory of Science and Technology of Micro-Nano Optics (LMNO), University of Science and Technology of China, is present...An overview of recent researches of surface plasmon resonance (SPR) sensing technology in Laboratory of Science and Technology of Micro-Nano Optics (LMNO), University of Science and Technology of China, is presented. Some novel SPR sensors, such as sensors based on metallic grating, metal-insulator-metal (MIM) nanoring and optical fiber, are designed or fabricated and tested. The sensor based on localized surface plasmon resonance (LSPR) of metallic nanoparticles is also be summarized. Because of the coupling of propagating surface plasmons and localized surface plasmons, the localized electromagnetic field is extremely enhanced, which is applied to surface-enhanced Raman scattering (SERS) and fluorenscence enhancement. Future prospects of SPR and/or LSPR sensing developments and applications are atso discussed.展开更多
AIM: To detect and analyze the changes on ocular surface and tear function in type II diabetic patients with proliferative diabetic retinopathy(PDR), an advanced stage of diabetic retinopathy(DR), using conventional o...AIM: To detect and analyze the changes on ocular surface and tear function in type II diabetic patients with proliferative diabetic retinopathy(PDR), an advanced stage of diabetic retinopathy(DR), using conventional ophthalmic tests and the high-resolution laser scanning confocal microscopy.METHODS: Fifty-eight patients with type II diabetes were selected. Based on the diagnostic criteria and stage classification of DR, the patients were divided into the non-DR(NDR) group and the PDR group. Thirty-six patients with cataract but no other ocular and systemic disease were included as non-diabetic controls. All the patients were subjected to the conventional clinical tests of corneal sensitivity, Schirmer I test, and corneal fluorescein staining. The non-invasive tear film break-up time(NIBUT) and tear interferometry were conducted by a Tearscope Plus. The morphology of corneal epithelia and nerve fibers was examined using the high-resolution confocal microscopy.RESULTS: The NDR group exhibited significantly declined corneal sensitivity and Schirmer I test value, as compared to the non-diabetic controls(P 【0.001). The PDR group showed significantly reduced corneal sensitivity, Schirmer I test value, and NIBUT in comparison to the non-diabetic controls(P 【0.001).Corneal fluorescein staining revealed the progressively injured corneal epithelia in the PDR patients. Moreover,significant decrease in the corneal epithelial density andmorphological abnormalities in the corneal epithelia and nerve fibers were also observed in the PDR patients.CONCLUSION: Ocular surface changes, including blunted corneal sensitivity, reduced tear secretion, tear film dysfunction, progressive loss of corneal epithelia and degeneration of nerve fibers, are common in type II diabetic patients, particularly in the diabetic patients with PDR. The corneal sensitivity, fluorescein staining scores,and the density of corneal epithelial cells and nerve fibers in the diabetic patients correlate with the duration of diabetes. Therefore, ocular surf展开更多
基金This work is supported by the National Key Basic Research Program of China (No. 2011cb301802), and Key Program of National Natural Science Foundation of China (No. 60736037). The authors gratefully acknowledge Prof. Y. H. Lu, D. G. Zhang, and P. Wang for many helpful discussions.
文摘An overview of recent researches of surface plasmon resonance (SPR) sensing technology in Laboratory of Science and Technology of Micro-Nano Optics (LMNO), University of Science and Technology of China, is presented. Some novel SPR sensors, such as sensors based on metallic grating, metal-insulator-metal (MIM) nanoring and optical fiber, are designed or fabricated and tested. The sensor based on localized surface plasmon resonance (LSPR) of metallic nanoparticles is also be summarized. Because of the coupling of propagating surface plasmons and localized surface plasmons, the localized electromagnetic field is extremely enhanced, which is applied to surface-enhanced Raman scattering (SERS) and fluorenscence enhancement. Future prospects of SPR and/or LSPR sensing developments and applications are atso discussed.
基金Supported by Shanxi China Scientific and Technological Project(No.2007031096-1)Ph.D.Program Foundation of Ministry of Education of China(No.20111202110008)
文摘AIM: To detect and analyze the changes on ocular surface and tear function in type II diabetic patients with proliferative diabetic retinopathy(PDR), an advanced stage of diabetic retinopathy(DR), using conventional ophthalmic tests and the high-resolution laser scanning confocal microscopy.METHODS: Fifty-eight patients with type II diabetes were selected. Based on the diagnostic criteria and stage classification of DR, the patients were divided into the non-DR(NDR) group and the PDR group. Thirty-six patients with cataract but no other ocular and systemic disease were included as non-diabetic controls. All the patients were subjected to the conventional clinical tests of corneal sensitivity, Schirmer I test, and corneal fluorescein staining. The non-invasive tear film break-up time(NIBUT) and tear interferometry were conducted by a Tearscope Plus. The morphology of corneal epithelia and nerve fibers was examined using the high-resolution confocal microscopy.RESULTS: The NDR group exhibited significantly declined corneal sensitivity and Schirmer I test value, as compared to the non-diabetic controls(P 【0.001). The PDR group showed significantly reduced corneal sensitivity, Schirmer I test value, and NIBUT in comparison to the non-diabetic controls(P 【0.001).Corneal fluorescein staining revealed the progressively injured corneal epithelia in the PDR patients. Moreover,significant decrease in the corneal epithelial density andmorphological abnormalities in the corneal epithelia and nerve fibers were also observed in the PDR patients.CONCLUSION: Ocular surface changes, including blunted corneal sensitivity, reduced tear secretion, tear film dysfunction, progressive loss of corneal epithelia and degeneration of nerve fibers, are common in type II diabetic patients, particularly in the diabetic patients with PDR. The corneal sensitivity, fluorescein staining scores,and the density of corneal epithelial cells and nerve fibers in the diabetic patients correlate with the duration of diabetes. Therefore, ocular surf