Intersections and discontinuities commonly arise in surface modeling and cause problems in downstream operations. Local geometry repair, such as cover holes or replace bad surfaces by adding new surface patches for de...Intersections and discontinuities commonly arise in surface modeling and cause problems in downstream operations. Local geometry repair, such as cover holes or replace bad surfaces by adding new surface patches for dealing with inconsistencies among the confluent region, where multiple surfaces meet, is a common technique used in CAD model repair and reverse engineering. However, local geometry repair destroys the topology of original CAD model and increases the number of surface patches needed for freeform surface shape modeling. Consequently, a topology recovery technique dealing with complex freeform surface model after local geometry repair is proposed. Firstly, construct the curve network which freeform surface model; secondly, apply freeform surface fitting method determine the geometry and topology properties of recovery to create B-spline surface patches to recover the topology of trimmed ones. Corresponding to the two levels of enforcing boundary conditions on a B-spline surface, two solution schemes are presented respectively. In the first solution scheme, non-constrained B-spline surface fitting method is utilized to piecewise recover trimmed confluent surface patches and then employs global beautification technique to smoothly stitch the recovery surface patches. In the other solution scheme, constrained B-spline surface fitting technique based on discretization of boundary conditions is directly applied to recover topology of surface model after local geometry repair while achieving G~ continuity simultaneously. The presented two different schemes are applied to the consistent surface model, which consists of five trimmed confluent surface patches and a local consistent surface patch, and a machine cover model, respectively. The application results show that our topology recovery technique meets shape-preserving and Gt continuity requirements in reverse engineering. This research converts the problem of topology recovery for consistent surface model to the problem of constructing G1 patches from a gi展开更多
Reliability and optimization are two key elements for structural design. The reliability~ based topology optimization (RBTO) is a powerful and promising methodology for finding the optimum topologies with the uncert...Reliability and optimization are two key elements for structural design. The reliability~ based topology optimization (RBTO) is a powerful and promising methodology for finding the optimum topologies with the uncertainties being explicitly considered, typically manifested by the use of reliability constraints. Generally, a direct integration of reliability concept and topol- ogy optimization may lead to computational difficulties. In view of this fact, three methodologies have been presented in this study, including the double-loop approach (the performance measure approach, PMA) and the decoupled approaches (the so-called Hybrid method and the sequential optimization and reliability assessment, SORA). For reliability analysis, the stochastic response surface method (SRSM) was applied, combining with the design of experiments generated by the sparse grid method, which has been proven as an effective and special discretization technique. The methodologies were investigated with three numerical examples considering the uncertainties including material properties and external loads. The optimal topologies obtained using the de- terministic, RBTOs were compared with one another; and useful conclusions regarding validity, accuracy and efficiency were drawn.展开更多
Support vehicles are part of the main body of airport ground operations,and their scheduling efficiency directly impacts flight delays.A mathematical model is constructed and the responsiveness of support vehicles for...Support vehicles are part of the main body of airport ground operations,and their scheduling efficiency directly impacts flight delays.A mathematical model is constructed and the responsiveness of support vehicles for current operational demands is proposed to study optimization algorithms for vehicle scheduling.The model is based on the constraint relationship of the initial operation time,time window,and gate position distribution,which gives an improvement to the ant colony algorithm(ACO).The impacts of the improved ACO as used for support vehicle optimization are compared and analyzed.The results show that the scheduling scheme of refueling trucks based on the improved ACO can reduce flight delays caused by refueling operations by 56.87%,indicating the improved ACO can improve support vehicle scheduling.Besides,the improved ACO can jump out of local optima,which can balance the working time of refueling trucks.This research optimizes the scheduling scheme of support vehicles under the existing conditions of airports,which has practical significance to fully utilize ground service resources,improve the efficiency of airport ground operations,and effectively reduce flight delays caused by ground service support.展开更多
提出了SGD(shape global deformation)算法并将其应用于回弹补偿分析中,进行补偿面的修改。其原理是以原始曲面为基础进行的曲面整体变形修改,这种方法能够保证变形前后的型面整体拓扑关系的一致性,保证曲面的质量、光顺程度,以便获得...提出了SGD(shape global deformation)算法并将其应用于回弹补偿分析中,进行补偿面的修改。其原理是以原始曲面为基础进行的曲面整体变形修改,这种方法能够保证变形前后的型面整体拓扑关系的一致性,保证曲面的质量、光顺程度,以便获得更精确的回弹补偿型面。经多个实例分析表明,该算法能够在很大程度上节省修改补偿型面的时间和精力,较大地提高曲面精度,回弹补偿更加准确。展开更多
An improved algorithm for computing multiphase flows is presented in which the multimaterial Moment-of-Fluid(MOF)algorithm for multiphase flows,initially described by Li et al.(2015),is enhanced addressing existing MO...An improved algorithm for computing multiphase flows is presented in which the multimaterial Moment-of-Fluid(MOF)algorithm for multiphase flows,initially described by Li et al.(2015),is enhanced addressing existing MOF difficulties in computing solutions to problems in which surface tension forces are crucial for understanding salient flow mechanisms.The Continuous MOF(CMOF)method is motivated in this article.The CMOF reconstruction method inherently removes the"checkerboard instability"that persists when using the MOF method on surface tension driven multiphase(multimaterial)flows.The CMOF reconstruction algorithm is accelerated by coupling the CMOF method to the level set method and coupling the CMOF method to a decision tree machine learning(ML)algorithm.Multiphase flow examples are shown in the two-dimensional(2D),three-dimensional(3D)axisymmetric"RZ",and 3D coordinate systems.Examples include two material and three material multiphase flows:bubble formation,the impingement of a liquid jet on a gas bubble in a cryogenic fuel tank,freezing,and liquid lens dynamics.展开更多
3D reconstruction based on single view aims to reconstruct the entire 3D shape of an object from one perspective.When existing methods reconstruct the mesh surface of complex objects,the surface details are difficult ...3D reconstruction based on single view aims to reconstruct the entire 3D shape of an object from one perspective.When existing methods reconstruct the mesh surface of complex objects,the surface details are difficult to predict and the reconstruction visual effect is poor because the mesh representation is not easily integrated into the deep learning framework;the 3D topology is easily limited by predefined templates and inflexible,and unnecessary mesh self-intersections and connections will be generated when reconstructing complex topology,thus destroying the surface details;the training of the reconstruction network is limited by the large amount of information attached to the mesh vertices,and the training time of the reconstructed network is too long.In this paper,we propose a method for fast mesh reconstruction from single view based on Graph Convolutional Network(GCN)and topology modification.We use GCN to ensure the generation of high-quality mesh surfaces and use topology modification to improve the flexibility of the topology.Meanwhile,a feature fusion method is proposed to make full use of the features of each stage of the image hierarchically.We use 3D open dataset ShapeNet to train our network and add a new weight parameter to speed up the training process.Extensive experiments demonstrate that our method can not only reconstruct object meshes on complex topological surfaces,but also has better qualitative and quantitative results.展开更多
The low melt strength and poor crystallization behavior severely limit the processing and application of poly(lactic acid)(PLA) as biodegradable film materials. In this work, three-arm poly(L-lactic acid)(3A-PLLA) gra...The low melt strength and poor crystallization behavior severely limit the processing and application of poly(lactic acid)(PLA) as biodegradable film materials. In this work, three-arm poly(L-lactic acid)(3A-PLLA) grafted silica nanoparticles with two kinds of topology structures were introduced into PLA matrix to improve the biodegradation performance. Different methods were used to characterize the structure of the grafted 3A-PLLA chains, the grafting density, and the thermal decomposition behavior of the nanoparticles. By varying the mass ratios of raw materials and altering the order of dropping solution in the reaction, high grafting densitytangled 3A-PLLA grafted SiO_2 was synthesized as "3A-PLLA grafting to SiO_2"(GTS), while low grafting density-stretched 3A-PLLA grafted SiO_2 was obtained as "SiO_2 grafting to 3A-PLLA"(GTA). Topology of nanoparticles as well as the filler-matrix interaction is critically important to structure bio-nanocomposites with desirable properties. Thus, the GTS and GTA nanoparticles were introduced into PLA matrix to assess the effect. The SEM images showed the uniform dispersion of the modified nanoparticles, while the shear rheology results revealed that GTA nanoparticles made a more significant contribution on the melt-strengthening and relaxation time-extension of PLA. Moreover, it is suggested that GTA nanoparticles were more effective to act as a nucleating agent for PLA, which was proved by differential scanning calorimetry(DSC) and polarized optical microscopy(POM) researches. All of the improvements mentioned above of GTA nanocomposites can be ascribed to stronger entanglements between 3A-PLLA stretched by nano-SiO_2 and PLA matrix.展开更多
基金supported by China Postdoctoral Science Foundation(Grant No. 20110490376)National Natural Science Foundation of China (Grant No. 50575098)
文摘Intersections and discontinuities commonly arise in surface modeling and cause problems in downstream operations. Local geometry repair, such as cover holes or replace bad surfaces by adding new surface patches for dealing with inconsistencies among the confluent region, where multiple surfaces meet, is a common technique used in CAD model repair and reverse engineering. However, local geometry repair destroys the topology of original CAD model and increases the number of surface patches needed for freeform surface shape modeling. Consequently, a topology recovery technique dealing with complex freeform surface model after local geometry repair is proposed. Firstly, construct the curve network which freeform surface model; secondly, apply freeform surface fitting method determine the geometry and topology properties of recovery to create B-spline surface patches to recover the topology of trimmed ones. Corresponding to the two levels of enforcing boundary conditions on a B-spline surface, two solution schemes are presented respectively. In the first solution scheme, non-constrained B-spline surface fitting method is utilized to piecewise recover trimmed confluent surface patches and then employs global beautification technique to smoothly stitch the recovery surface patches. In the other solution scheme, constrained B-spline surface fitting technique based on discretization of boundary conditions is directly applied to recover topology of surface model after local geometry repair while achieving G~ continuity simultaneously. The presented two different schemes are applied to the consistent surface model, which consists of five trimmed confluent surface patches and a local consistent surface patch, and a machine cover model, respectively. The application results show that our topology recovery technique meets shape-preserving and Gt continuity requirements in reverse engineering. This research converts the problem of topology recovery for consistent surface model to the problem of constructing G1 patches from a gi
基金Project supported by the National Natural Science Foundation of China(Nos.51275040 and 50905017)the Programme of Introducing Talents of Discipline to Universities(No.B12022)
文摘Reliability and optimization are two key elements for structural design. The reliability~ based topology optimization (RBTO) is a powerful and promising methodology for finding the optimum topologies with the uncertainties being explicitly considered, typically manifested by the use of reliability constraints. Generally, a direct integration of reliability concept and topol- ogy optimization may lead to computational difficulties. In view of this fact, three methodologies have been presented in this study, including the double-loop approach (the performance measure approach, PMA) and the decoupled approaches (the so-called Hybrid method and the sequential optimization and reliability assessment, SORA). For reliability analysis, the stochastic response surface method (SRSM) was applied, combining with the design of experiments generated by the sparse grid method, which has been proven as an effective and special discretization technique. The methodologies were investigated with three numerical examples considering the uncertainties including material properties and external loads. The optimal topologies obtained using the de- terministic, RBTOs were compared with one another; and useful conclusions regarding validity, accuracy and efficiency were drawn.
基金the Science and Technology Cooperation Research and Development Project of Sichuan Provincial Academy and University(Grant No.2019YFSY0024)the Key Research and Development Program in Sichuan Province of China(Grant No.2019YFG0050)the Natural Science Foundation of Guangxi Province of China(Grant No.AD19245021).
文摘Support vehicles are part of the main body of airport ground operations,and their scheduling efficiency directly impacts flight delays.A mathematical model is constructed and the responsiveness of support vehicles for current operational demands is proposed to study optimization algorithms for vehicle scheduling.The model is based on the constraint relationship of the initial operation time,time window,and gate position distribution,which gives an improvement to the ant colony algorithm(ACO).The impacts of the improved ACO as used for support vehicle optimization are compared and analyzed.The results show that the scheduling scheme of refueling trucks based on the improved ACO can reduce flight delays caused by refueling operations by 56.87%,indicating the improved ACO can improve support vehicle scheduling.Besides,the improved ACO can jump out of local optima,which can balance the working time of refueling trucks.This research optimizes the scheduling scheme of support vehicles under the existing conditions of airports,which has practical significance to fully utilize ground service resources,improve the efficiency of airport ground operations,and effectively reduce flight delays caused by ground service support.
文摘提出了SGD(shape global deformation)算法并将其应用于回弹补偿分析中,进行补偿面的修改。其原理是以原始曲面为基础进行的曲面整体变形修改,这种方法能够保证变形前后的型面整体拓扑关系的一致性,保证曲面的质量、光顺程度,以便获得更精确的回弹补偿型面。经多个实例分析表明,该算法能够在很大程度上节省修改补偿型面的时间和精力,较大地提高曲面精度,回弹补偿更加准确。
基金supported by the National Aeronautics and Space Administration under grant number 80NSSC20K0352.
文摘An improved algorithm for computing multiphase flows is presented in which the multimaterial Moment-of-Fluid(MOF)algorithm for multiphase flows,initially described by Li et al.(2015),is enhanced addressing existing MOF difficulties in computing solutions to problems in which surface tension forces are crucial for understanding salient flow mechanisms.The Continuous MOF(CMOF)method is motivated in this article.The CMOF reconstruction method inherently removes the"checkerboard instability"that persists when using the MOF method on surface tension driven multiphase(multimaterial)flows.The CMOF reconstruction algorithm is accelerated by coupling the CMOF method to the level set method and coupling the CMOF method to a decision tree machine learning(ML)algorithm.Multiphase flow examples are shown in the two-dimensional(2D),three-dimensional(3D)axisymmetric"RZ",and 3D coordinate systems.Examples include two material and three material multiphase flows:bubble formation,the impingement of a liquid jet on a gas bubble in a cryogenic fuel tank,freezing,and liquid lens dynamics.
基金This work was supported,in part,by the Natural Science Foundation of Jiangsu Province under Grant Numbers BK20201136,BK20191401in part,by the National Nature Science Foundation of China under Grant Numbers 61502240,61502096,61304205,61773219in part,by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)fund.
文摘3D reconstruction based on single view aims to reconstruct the entire 3D shape of an object from one perspective.When existing methods reconstruct the mesh surface of complex objects,the surface details are difficult to predict and the reconstruction visual effect is poor because the mesh representation is not easily integrated into the deep learning framework;the 3D topology is easily limited by predefined templates and inflexible,and unnecessary mesh self-intersections and connections will be generated when reconstructing complex topology,thus destroying the surface details;the training of the reconstruction network is limited by the large amount of information attached to the mesh vertices,and the training time of the reconstructed network is too long.In this paper,we propose a method for fast mesh reconstruction from single view based on Graph Convolutional Network(GCN)and topology modification.We use GCN to ensure the generation of high-quality mesh surfaces and use topology modification to improve the flexibility of the topology.Meanwhile,a feature fusion method is proposed to make full use of the features of each stage of the image hierarchically.We use 3D open dataset ShapeNet to train our network and add a new weight parameter to speed up the training process.Extensive experiments demonstrate that our method can not only reconstruct object meshes on complex topological surfaces,but also has better qualitative and quantitative results.
基金financial support of the National Natural Science Foundation of China(Nos.51721091,21674069,and 21174092)
文摘The low melt strength and poor crystallization behavior severely limit the processing and application of poly(lactic acid)(PLA) as biodegradable film materials. In this work, three-arm poly(L-lactic acid)(3A-PLLA) grafted silica nanoparticles with two kinds of topology structures were introduced into PLA matrix to improve the biodegradation performance. Different methods were used to characterize the structure of the grafted 3A-PLLA chains, the grafting density, and the thermal decomposition behavior of the nanoparticles. By varying the mass ratios of raw materials and altering the order of dropping solution in the reaction, high grafting densitytangled 3A-PLLA grafted SiO_2 was synthesized as "3A-PLLA grafting to SiO_2"(GTS), while low grafting density-stretched 3A-PLLA grafted SiO_2 was obtained as "SiO_2 grafting to 3A-PLLA"(GTA). Topology of nanoparticles as well as the filler-matrix interaction is critically important to structure bio-nanocomposites with desirable properties. Thus, the GTS and GTA nanoparticles were introduced into PLA matrix to assess the effect. The SEM images showed the uniform dispersion of the modified nanoparticles, while the shear rheology results revealed that GTA nanoparticles made a more significant contribution on the melt-strengthening and relaxation time-extension of PLA. Moreover, it is suggested that GTA nanoparticles were more effective to act as a nucleating agent for PLA, which was proved by differential scanning calorimetry(DSC) and polarized optical microscopy(POM) researches. All of the improvements mentioned above of GTA nanocomposites can be ascribed to stronger entanglements between 3A-PLLA stretched by nano-SiO_2 and PLA matrix.