An attempt has been made to analyze the effect of surface site on the spin state for the interaction of NO with Pd<sub>2</sub>, Rh<sub>2</sub> and PdRh nanoparticles that supported at regular a...An attempt has been made to analyze the effect of surface site on the spin state for the interaction of NO with Pd<sub>2</sub>, Rh<sub>2</sub> and PdRh nanoparticles that supported at regular and defective MgO(001) surfaces. The adsorption properties of NO on homonuclear, Pd<sub>2</sub>, Rh<sub>2</sub>, and heteronuclear transition metal dimers, PdRh, that deposited on MgO(001) surface have been studied by means of hybrid density functional theory calculations and embedded cluster model. The most stable NO chemisorption geometry is in a bridge position on Pd<sub>2</sub> and a top configuration of Rh<sub>2</sub> and PdRh with N-down oriented. NO prefers binding to Rh site when both Rh and Pd atoms co-exist in the PdRh. The natural bond orbital analysis (NBO) reveals that the electronic structure of the adsorbed metal represents a qualitative change with respect to that of the free metal. The adsorption properties of NO have been analyzed with reference to the NBO, charge transfer, band gaps, pairwise and non-pairwise additivity. The binding of NO precursor is dominated by the E<sub>(i)</sub>M<sub>x</sub>-NO</sup> pairwise additive components and the role of the support was not restricted to supporting the metal. The adsorbed dimers on the MgO surface lose most of the metal-metal interaction due to the relatively strong bond with the substrate. Spin polarized calculations were performed and the results concern the systems in their more stable spin states. Spin quenching occurs for Rh atom, Pd<sub>2</sub>, Rh<sub>2</sub> and PdRh complexes at the terrace and defective surfaces. The adsorption energies of the low spin states of spin quenched complexes are always greater than those of the high spin states. The metal-support and dimer-support interactions stabilize the low spin states of the adsorbed metals with respect to the isolated metals and dimers. Although the interaction of Pd, Rh, Pd<sub>2</sub>, Rh<sub>2</sub> and PdRh particles with Fs sites is much stronger than the regular sites O<sup>2-</sup>, the adsorpt展开更多
This work reports an FTIR study of the NO_x adsorption/desorption cycles on tin oxide nanosized particles under the operating conditions of real sensors (150℃,in presence of O_2).The chemical reactions are monitored...This work reports an FTIR study of the NO_x adsorption/desorption cycles on tin oxide nanosized particles under the operating conditions of real sensors (150℃,in presence of O_2).The chemical reactions are monitored in situ and correlated with the variations of the SnO_2 electrical conductivity.On the basis of the FTIR spectra,two contributing mechanisms for the NO_x detection are suggested.The first one presents the formation of bridged nitrate groups bound to the SnO_2 surface via oxygen vacancies acting as electron donor sites.The second mechanism also involves surface oxygen vacancies in the coordination of NO_x,but this time the formation of NO_x anionic species is considered.Both mechanisms lead to the decrease of the electrical conductivity under NO_x adsorption.However,the bridged nitrate groups are not reversible under gas desorption and thus irreversibly contaminate the surface after the first NO_x adsorption.On the contrary,the nitrosyl anionic species are reversible and,from the second NO_x adsorption/desorption cycle,ensure the reproducibility of the sensor response.展开更多
The existence and uniqueness theorem of classical solutions of a coupled system of nonlinear parabolic PDEs arising in modelling of chemical reactions between two polymeric reactants over inhomogeneous surfaces with n...The existence and uniqueness theorem of classical solutions of a coupled system of nonlinear parabolic PDEs arising in modelling of chemical reactions between two polymeric reactants over inhomogeneous surfaces with nonclassical boundary conditions is proved and the long-time behaviour of the solution is studied.展开更多
Bottom-up approach to constructing low-dimensional nanostructures on surfaces with terminal alkynes has drawn great interest because of its potential applications in fabricating advanced functional nanomaterials. The ...Bottom-up approach to constructing low-dimensional nanostructures on surfaces with terminal alkynes has drawn great interest because of its potential applications in fabricating advanced functional nanomaterials. The diversity of the achieved products manifests rich chemistry of terminal alkynes and hence careful linking strategies and proper controlling methodologies are required for selective preparations of high-quality target nanoarchitectures. This review summarizes various on-surface linking strategies for terminal alkynes, including non-bonding interactions as well as organometallic and covalent bonds, and presents examples to show effective control of surface assemblies and reactions of terminal alkynes by variations of the precursor structures, substrates and activation modes. Systematic studies of the on-surface linkage of terminal alkynes may help efficient and predictable preparations of surface nanomaterials and further understanding of surface chemistry.展开更多
文摘An attempt has been made to analyze the effect of surface site on the spin state for the interaction of NO with Pd<sub>2</sub>, Rh<sub>2</sub> and PdRh nanoparticles that supported at regular and defective MgO(001) surfaces. The adsorption properties of NO on homonuclear, Pd<sub>2</sub>, Rh<sub>2</sub>, and heteronuclear transition metal dimers, PdRh, that deposited on MgO(001) surface have been studied by means of hybrid density functional theory calculations and embedded cluster model. The most stable NO chemisorption geometry is in a bridge position on Pd<sub>2</sub> and a top configuration of Rh<sub>2</sub> and PdRh with N-down oriented. NO prefers binding to Rh site when both Rh and Pd atoms co-exist in the PdRh. The natural bond orbital analysis (NBO) reveals that the electronic structure of the adsorbed metal represents a qualitative change with respect to that of the free metal. The adsorption properties of NO have been analyzed with reference to the NBO, charge transfer, band gaps, pairwise and non-pairwise additivity. The binding of NO precursor is dominated by the E<sub>(i)</sub>M<sub>x</sub>-NO</sup> pairwise additive components and the role of the support was not restricted to supporting the metal. The adsorbed dimers on the MgO surface lose most of the metal-metal interaction due to the relatively strong bond with the substrate. Spin polarized calculations were performed and the results concern the systems in their more stable spin states. Spin quenching occurs for Rh atom, Pd<sub>2</sub>, Rh<sub>2</sub> and PdRh complexes at the terrace and defective surfaces. The adsorption energies of the low spin states of spin quenched complexes are always greater than those of the high spin states. The metal-support and dimer-support interactions stabilize the low spin states of the adsorbed metals with respect to the isolated metals and dimers. Although the interaction of Pd, Rh, Pd<sub>2</sub>, Rh<sub>2</sub> and PdRh particles with Fs sites is much stronger than the regular sites O<sup>2-</sup>, the adsorpt
文摘This work reports an FTIR study of the NO_x adsorption/desorption cycles on tin oxide nanosized particles under the operating conditions of real sensors (150℃,in presence of O_2).The chemical reactions are monitored in situ and correlated with the variations of the SnO_2 electrical conductivity.On the basis of the FTIR spectra,two contributing mechanisms for the NO_x detection are suggested.The first one presents the formation of bridged nitrate groups bound to the SnO_2 surface via oxygen vacancies acting as electron donor sites.The second mechanism also involves surface oxygen vacancies in the coordination of NO_x,but this time the formation of NO_x anionic species is considered.Both mechanisms lead to the decrease of the electrical conductivity under NO_x adsorption.However,the bridged nitrate groups are not reversible under gas desorption and thus irreversibly contaminate the surface after the first NO_x adsorption.On the contrary,the nitrosyl anionic species are reversible and,from the second NO_x adsorption/desorption cycle,ensure the reproducibility of the sensor response.
基金supported by the Research Council of Lithuania(project No.S-MIP-17-65)
文摘The existence and uniqueness theorem of classical solutions of a coupled system of nonlinear parabolic PDEs arising in modelling of chemical reactions between two polymeric reactants over inhomogeneous surfaces with nonclassical boundary conditions is proved and the long-time behaviour of the solution is studied.
基金jointly supported by National Natural Science Foundation of China (NSFC) (Nos. 91527303, 21333001)
文摘Bottom-up approach to constructing low-dimensional nanostructures on surfaces with terminal alkynes has drawn great interest because of its potential applications in fabricating advanced functional nanomaterials. The diversity of the achieved products manifests rich chemistry of terminal alkynes and hence careful linking strategies and proper controlling methodologies are required for selective preparations of high-quality target nanoarchitectures. This review summarizes various on-surface linking strategies for terminal alkynes, including non-bonding interactions as well as organometallic and covalent bonds, and presents examples to show effective control of surface assemblies and reactions of terminal alkynes by variations of the precursor structures, substrates and activation modes. Systematic studies of the on-surface linkage of terminal alkynes may help efficient and predictable preparations of surface nanomaterials and further understanding of surface chemistry.