期刊文献+
共找到764篇文章
< 1 2 39 >
每页显示 20 50 100
用于回归估计的支持向量机方法 被引量:140
1
作者 杜树新 吴铁军 《系统仿真学报》 CAS CSCD 2003年第11期1580-1585,1633,共7页
用于回归估计的支持向量机方法以可控制的精度逼近非线性函数,具有全局最优、良好泛化能力等优越性能,得到广泛的研究。描述了该方法的基本思想,着重讨论了n-SVM、最小二乘SVM、加权SVM、线性SVM等支持向量机的新方法,降低训练时间和减... 用于回归估计的支持向量机方法以可控制的精度逼近非线性函数,具有全局最优、良好泛化能力等优越性能,得到广泛的研究。描述了该方法的基本思想,着重讨论了n-SVM、最小二乘SVM、加权SVM、线性SVM等支持向量机的新方法,降低训练时间和减少计算复杂性的分解法、SMO及增量学习算法。在非线性系统参数辨识、预测预报、建模与控制研究中,支持向量机是很有发展前途的研究方法。 展开更多
关键词 支持向量机 回归估计 预测预报 建模与控制
下载PDF
多核学习方法 被引量:156
2
作者 汪洪桥 孙富春 +2 位作者 蔡艳宁 陈宁 丁林阁 《自动化学报》 EI CSCD 北大核心 2010年第8期1037-1050,共14页
多核学习方法是当前核机器学习领域的一个新的热点.核方法是解决非线性模式分析问题的一种有效方法,但在一些复杂情形下,由单个核函数构成的核机器并不能满足诸如数据异构或不规则、样本规模巨大、样本不平坦分布等实际的应用需求,因此... 多核学习方法是当前核机器学习领域的一个新的热点.核方法是解决非线性模式分析问题的一种有效方法,但在一些复杂情形下,由单个核函数构成的核机器并不能满足诸如数据异构或不规则、样本规模巨大、样本不平坦分布等实际的应用需求,因此将多个核函数进行组合,以获得更好的结果是一种必然选择.本文根据多核的构成,从合成核、多尺度核、无限核三个角度,系统综述了多核方法的构造理论,分析了多核学习典型方法的特点及不足,总结了各自的应用领域,并凝炼了其进一步的研究方向. 展开更多
关键词 核方法 多核学习 合成核 多尺度核 支持向量机 模式识别 回归
下载PDF
支持向量机算法和软件ChemSVM介绍 被引量:73
3
作者 陆文聪 陈念贻 +1 位作者 叶晨洲 李国正 《计算机与应用化学》 CAS CSCD 北大核心 2002年第6期697-702,共6页
Vladimir N.Vapnik等提出的统计学习理论(statistical learning theory,简称SLT)和支持向量机(support vector machine,简称SVM)算法已取得令人鼓舞的研究成果。本文旨在对这一新理论和新算法的原理作一介绍,并展望这一计算机学界的新... Vladimir N.Vapnik等提出的统计学习理论(statistical learning theory,简称SLT)和支持向量机(support vector machine,简称SVM)算法已取得令人鼓舞的研究成果。本文旨在对这一新理论和新算法的原理作一介绍,并展望这一计算机学界的新成果在化学化工领域的应用前景。“ChemSVM”软件提供了通用的支持向量机算法,并将其与数据库、知识库、原子参数及其他数据挖掘方法有机地集成起来。 展开更多
关键词 支持向量机算法 ChemSVM 模式识别 支持向量机 支持向量分类 支持向量回归 化学 化工 应用 统计学习理论 核函数
原文传递
基于支持向量机回归的短时交通流预测模型 被引量:89
4
作者 傅贵 韩国强 +1 位作者 逯峰 许子鑫 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第9期71-76,共6页
将交通流预测的理论和方法引入交通控制系统,可提高交通控制系统对交通流变化的自适应能力.为此,文中通过引入核函数把短时交通流预测问题转化为高维空间中的线性回归问题,提出了基于支持向量机回归的短时交通流预测模型,并利用广州市... 将交通流预测的理论和方法引入交通控制系统,可提高交通控制系统对交通流变化的自适应能力.为此,文中通过引入核函数把短时交通流预测问题转化为高维空间中的线性回归问题,提出了基于支持向量机回归的短时交通流预测模型,并利用广州市交通流检测系统的数据进行实验.结果表明,文中模型的预测结果与实际数据相吻合,预测误差小于基于卡尔曼滤波的预测方法,从而验证了该模型的可行性和有效性. 展开更多
关键词 交通控制 短时交通流 预测模型 机器学习 支持向量机回归
下载PDF
基于支持向量机回归组合模型的中长期降温负荷预测 被引量:85
5
作者 王宁 谢敏 +4 位作者 邓佳梁 刘明波 李嘉龙 王一 刘思捷 《电力系统保护与控制》 EI CSCD 北大核心 2016年第3期92-97,共6页
提出基于支持向量机回归组合模型的中长期降温负荷预测方法。其中,支持向量机模型以多种社会经济数据为输入参数,年最大降温负荷值为输出参数。在训练过程中采用网格搜索法对支持向量机回归模型参数进行优化;回归分析中,综合采用线性、... 提出基于支持向量机回归组合模型的中长期降温负荷预测方法。其中,支持向量机模型以多种社会经济数据为输入参数,年最大降温负荷值为输出参数。在训练过程中采用网格搜索法对支持向量机回归模型参数进行优化;回归分析中,综合采用线性、二次和三次多元回归的组合模型;最后利用最优组合预测方法将二者组合。采用广东省2008~2011年实际负荷数据和社会经济数据为训练样本,2012~2014年数据为测试样本,对支持向量机回归组合预测模型进行验证,同时也对2015和2020年最大降温负荷进行预测。结果表明,预测值与真实值的误差控制在5%以下,验证了该中长期降温负荷预测模型的有效性。目前该预测模型已在广东电网得到实际应用。 展开更多
关键词 支持向量机 多元线性回归 多项式回归 组合模型 中长期降温负荷预测
下载PDF
基于支持向量机的非线性系统辨识 被引量:59
6
作者 张浩然 韩正之 李昌刚 《系统仿真学报》 CAS CSCD 2003年第1期119-121,共3页
支持向量机(SVM)是一种基于结构风险最小化原理的学习技术,也是一种新的具有很好泛化性能的回归方法,该文利用支持向量机对非线性系统进行黑箱建模,介绍了v-SVR的基本理论,并进行了仿真实验,结果验证了所提出的方法的正确性和有效性。
关键词 支持向量机 非线性系统 统计学习理论 回归估计 系统辨识
下载PDF
基于支持向量机的数据库学习算法 被引量:53
7
作者 田盛丰 黄厚宽 《计算机研究与发展》 EI CSCD 北大核心 2000年第1期17-22,共6页
文中介绍一个利用数据库中的大量数据进行决策的方法.对于仅涉及数据库中部分数据的问题,对数据库中与当前问题相关的数据采用具有强泛化能力的支持向量机方法学习分类规则和回归函数,完成对当前问题的分类和估值.支持向量机算法用... 文中介绍一个利用数据库中的大量数据进行决策的方法.对于仅涉及数据库中部分数据的问题,对数据库中与当前问题相关的数据采用具有强泛化能力的支持向量机方法学习分类规则和回归函数,完成对当前问题的分类和估值.支持向量机算法用非线性映射把数据映射到一个高维特征空间,在高维特征空间进行线性分类和线性回归,将原问题转化为一个凸二次优化问题.上述算法实现了一个隧道工程支护设计系统,并取得了较好的效果. 展开更多
关键词 支持向量机 数据库 学习算法 人工智能 隧道工程
下载PDF
关于支持向量回归机的模型选择 被引量:59
8
作者 苏高利 邓芳萍 《科技通报》 2006年第2期154-158,共5页
支持向量机是在统计学习理论基础上发展起来的一种新型的机器学习方法。模型选择是设计支持向量机的重要内容之一。本文在分析用于回归的支持向量机原理的基础上,分别从核函数的选择、模型参数的作用、模型参数的调整方法等模型选择方... 支持向量机是在统计学习理论基础上发展起来的一种新型的机器学习方法。模型选择是设计支持向量机的重要内容之一。本文在分析用于回归的支持向量机原理的基础上,分别从核函数的选择、模型参数的作用、模型参数的调整方法等模型选择方面进行了综述,并讨论了模型选择的优缺点,最后指出在实际应用中常见的核函数和模型参数调整方法。 展开更多
关键词 支持向量回归机 核函数 模型参数 模型选择
下载PDF
支持向量机的时间序列回归与预测 被引量:63
9
作者 董辉 傅鹤林 冷伍明 《系统仿真学报》 EI CAS CSCD 北大核心 2006年第7期1785-1788,共4页
详细分析了支持向量机用于时间序列预测的理论基础。采用支持向量机、RBF和Elman神经网络模型,对仿真时序和工程滑坡变形时序进行了回归与外延预测。结果表明,在噪声水平较低时,SVR回归效果稍好,Elman与RBF网络的稳健性相对较差;随着噪... 详细分析了支持向量机用于时间序列预测的理论基础。采用支持向量机、RBF和Elman神经网络模型,对仿真时序和工程滑坡变形时序进行了回归与外延预测。结果表明,在噪声水平较低时,SVR回归效果稍好,Elman与RBF网络的稳健性相对较差;随着噪声水平增大,两种神经网络的回归精度迅速下降。对于外延预测,两种神经网络仅限于短期的非线性模拟,而泛化性能更好的SVR在短期具有比较理想的效果,在较长的时间区间里也具有较高的预测精度(7步预测准确度控制在83.5%以上)。 展开更多
关键词 支持向量机 回归 ELMAN网络 滑坡变形
下载PDF
支持向量机回归的参数选择方法 被引量:66
10
作者 闫国华 朱永生 《计算机工程》 CAS CSCD 北大核心 2009年第14期218-220,共3页
综合4种支持向量机回归的参数选择方法的优点,提出一种对训练样本进行分析并直接确定参数的方法。在标准测试数据集上的试验证明,该方法与传统网格搜索法相比,在时间和预测精度方面取得了更好的结果,可以较好地解决支持向量机在实际应... 综合4种支持向量机回归的参数选择方法的优点,提出一种对训练样本进行分析并直接确定参数的方法。在标准测试数据集上的试验证明,该方法与传统网格搜索法相比,在时间和预测精度方面取得了更好的结果,可以较好地解决支持向量机在实际应用中参数难以选择、消耗时间长的问题。 展开更多
关键词 支持向量机 回归 参数选择
下载PDF
边坡位移非线性时间序列采用支持向量机算法的智能建模与预测研究 被引量:64
11
作者 刘开云 乔春生 滕文彦 《岩土工程学报》 EI CAS CSCD 北大核心 2004年第1期57-61,共5页
介绍了人工智能领域最新的基于结构风险最小化原理的数据挖掘算法———支持向量机算法,运用Matlab语言编写了程序,采用不同的核函数对具体的边坡工程实例作了计算,并将人工神经元网络计算结果与之对比,可见无论是在学习或预测精度方面... 介绍了人工智能领域最新的基于结构风险最小化原理的数据挖掘算法———支持向量机算法,运用Matlab语言编写了程序,采用不同的核函数对具体的边坡工程实例作了计算,并将人工神经元网络计算结果与之对比,可见无论是在学习或预测精度方面,支持向量机算法较基于经验风险最小化原理的人工神经元网络算法都有很大的优越性,可以运用于实际工程。 展开更多
关键词 边坡 位移 非线性 时间序列 支持向量机 回归算法 位移预测
下载PDF
分时电价下用户响应行为的模型与算法 被引量:71
12
作者 刘继东 韩学山 +1 位作者 韩伟吉 张利 《电网技术》 EI CSCD 北大核心 2013年第10期2973-2978,共6页
为满足需求响应机制中描述用户行为规律的需要,提出一种电力用户需求响应行为的模型与算法。在获取足够的用户历史数据的基础上,通过支持向量机(support vector machine,SVM)回归进行数据挖掘,建立了电力用户在分时电价下的响应行为模... 为满足需求响应机制中描述用户行为规律的需要,提出一种电力用户需求响应行为的模型与算法。在获取足够的用户历史数据的基础上,通过支持向量机(support vector machine,SVM)回归进行数据挖掘,建立了电力用户在分时电价下的响应行为模型。该方法以用户响应的影响因素分析为基础,确定了回归模型的输入与输出属性;并通过定义等效电价比率,构建了含丰富数据信息的训练样本;最后采用网格搜索法选择SVM回归的最佳参数,实现了回归模型的高精度预测。该模型实现了电力用户在分时电价下行为规律的模拟,可揭示用户响应电量变化与分时电价政策激励力度间的关系,从而为更多研究提供基础数据。仿真分析证明了该模型和算法的有效性和合理性。 展开更多
关键词 需求响应 分时电价 用户行为 支持向量机 回归分析
下载PDF
小样本数据的支持向量机回归模型参数及预测区间研究 被引量:62
13
作者 陈果 周伽 《计量学报》 EI CSCD 北大核心 2008年第1期92-96,共5页
支持向量机是由统计学习理论发展起来的机器学习算法,它从结构风险最小化的角度保证了模型的最大泛化能力。文中运用支持向量机进行小样本数据回归分析研究。首先利用推广性的界理论指导支持向量机回归模型参数的选取,以保证模型具有最... 支持向量机是由统计学习理论发展起来的机器学习算法,它从结构风险最小化的角度保证了模型的最大泛化能力。文中运用支持向量机进行小样本数据回归分析研究。首先利用推广性的界理论指导支持向量机回归模型参数的选取,以保证模型具有最大的推广能力;其次,运用基于正态分布和基于t分布的两种区间预测方法进行了预测值的区间估计;最后,利用模拟序列和真实的航空发动机油样光谱分析数据作为实验数据,建立了支持向量机回归分析模型,并与最小二乘法进行了比较。结果表明,所提出的支持向量机模型参数选取和区间估计方法适用于小样本数据的回归分析,具有较高的预测精度。 展开更多
关键词 计量学 支持向量机 小样本 回归模型 预测精度 区间估计
下载PDF
回归支持向量机的改进序列最小优化学习算法 被引量:32
14
作者 张浩然 韩正之 《软件学报》 EI CSCD 北大核心 2003年第12期2006-2013,共8页
支持向量机(support vector machine,简称SVM)是一种基于结构风险最小化原理的学习技术,也是一种新的具有很好泛化性能的回归方法,提出了实现回归支持向量机的一种改进的SMO(sequential minimal optimization)算法,给出了两变量子优化... 支持向量机(support vector machine,简称SVM)是一种基于结构风险最小化原理的学习技术,也是一种新的具有很好泛化性能的回归方法,提出了实现回归支持向量机的一种改进的SMO(sequential minimal optimization)算法,给出了两变量子优化问题的解析解,设计了新的工作集选择方法和停止条件,仿真实例说明,所提出的SMO算法比原始SMO算法具有更快的运算速度. 展开更多
关键词 支持向量机 核方法 回归 序列最小优化
下载PDF
自适应GA-SVM参数选择算法研究 被引量:46
15
作者 刘胜 李妍妍 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2007年第4期398-402,共5页
支持向量机是一种非常有前景的学习机器,它的回归算法已经成功地用于解决非线性函数的逼近问题.但是,SVM参数的选择大多数是凭经验选取,这种方法依赖于使用者的水平,这样不仅不能获得最佳的函数逼近效果,而且采用人工的方法选择SVM参数... 支持向量机是一种非常有前景的学习机器,它的回归算法已经成功地用于解决非线性函数的逼近问题.但是,SVM参数的选择大多数是凭经验选取,这种方法依赖于使用者的水平,这样不仅不能获得最佳的函数逼近效果,而且采用人工的方法选择SVM参数比较浪费时间,这在很大程度上限制了它的应用.为了能够自动地获得最佳的SVM参数,提出了基于自适应遗传算法的SVM参数选取方法.该方法根据适应度值自动调整交叉概率和变异概率,减少了遗传算法的收敛时间并且提高了遗传算法的精度,从而确保了SVM参数选择的准确性.将该方法应用于船用锅炉汽包水位系统建模,仿真结果表明由该方法所得的SVM具有较简单的结构和较好的泛化能力,仿真精度高,具有一定的理论推广意义. 展开更多
关键词 机器学习 支持向量机 支持向量机回归 自适应遗传算法 非线性系统辨识
下载PDF
回归型支持向量机的简化算法 被引量:27
16
作者 田盛丰 黄厚宽 《软件学报》 EI CSCD 北大核心 2002年第6期1169-1172,共4页
针对支持向量机应用于函数估计时支持向量过多所引起的计算复杂性,提出一种简化算法,可以大幅度地减少支持向量的数量,从而简化其应用.采用简化算法还可以将最小平方支持向量机算法和串行最小化算法结合起来,达到学习效率高且生成的支... 针对支持向量机应用于函数估计时支持向量过多所引起的计算复杂性,提出一种简化算法,可以大幅度地减少支持向量的数量,从而简化其应用.采用简化算法还可以将最小平方支持向量机算法和串行最小化算法结合起来,达到学习效率高且生成的支持向量少的效果. 展开更多
关键词 回归型支持向量机 简化算法 机器学习 计算复杂性 人工神经网络
下载PDF
混沌-支持向量机回归在流量预测中的应用研究 被引量:49
17
作者 罗赟骞 夏靖波 王焕彬 《计算机科学》 CSCD 北大核心 2009年第7期244-246,共3页
为了提高流量预测准确性,将混沌理论和支持向量机回归应用于网络流量预测。采用相空间重构理论计算实际流量的延时、嵌入维数和Lyapunov指数,证实网络流量存在混沌现象;据此建立混沌-支持向量机预测模型并确定训练样本对,对实际网络流... 为了提高流量预测准确性,将混沌理论和支持向量机回归应用于网络流量预测。采用相空间重构理论计算实际流量的延时、嵌入维数和Lyapunov指数,证实网络流量存在混沌现象;据此建立混沌-支持向量机预测模型并确定训练样本对,对实际网络流量数据进行预测。结果表明,该方法能有效地进行流量预测,相对于BP神经网络方法,该方法具有更好的预测精度。 展开更多
关键词 支持向量机 流量预测 回归 混沌
下载PDF
基于支持向量机的输电线路覆冰回归模型 被引量:43
18
作者 戴栋 黄筱婷 +3 位作者 代洲 郝艳捧 李立浧 傅闯 《高电压技术》 EI CAS CSCD 北大核心 2013年第11期2822-2828,共7页
为对输电线路覆冰进行有效地监测、预测及预警,提出了一种基于支持向量机(support vector machine,SVM)的输电线路覆冰回归模型,用于输电线路覆冰情况的短期预测。这一研究工作是在MATLAB环境下,应用LIBSVM软件包编程进行建模仿真的;针... 为对输电线路覆冰进行有效地监测、预测及预警,提出了一种基于支持向量机(support vector machine,SVM)的输电线路覆冰回归模型,用于输电线路覆冰情况的短期预测。这一研究工作是在MATLAB环境下,应用LIBSVM软件包编程进行建模仿真的;针对实测微气象-覆冰数据多维、自由度大的特性,选定与覆冰相关性最大的气温、相对空气湿度数据以及覆冰参考量作为输入量,覆冰质量作为输出量;提出了基于支持向量机的超短期预测、短期迟滞预测和滚动预测3种预测模型,并通过实例数据仿真评估了模型的有效性。结果表明:超短期预测模型预测精度>90%,但时效仅15min、实用价值较低;短期迟滞预测模型和滚动预测模型在2h内预测精度均>80%,可适用于输电线路覆冰的短期实时预测;滚动预测模型理论上可预测更长期的覆冰情况,假设微气象参量恒定不变限制了其预测精度,若结合微气象预报将会有更好的预测效果。由于目前适用于建模仿真的完整覆冰数据较少,因此支持向量机用于建立输电线路覆冰回归模型的有效性和稳定性还有待进一步验证。 展开更多
关键词 覆冰 输电线路 支持向量机 回归模型 短期预测 在线监测
下载PDF
连续小波变换高光谱数据的土壤有机质含量反演模型构建 被引量:42
19
作者 于雷 洪永胜 +1 位作者 周勇 朱强 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2016年第5期1428-1433,共6页
土壤有机质含量是反映土壤肥力的重要指标,对其进行动态监测是实施精准农业的重要措施。近年来,众多学者尝试采用土壤近地传感(proximal soil sensing),尤其是近地高光谱技术,在田间和实验室获取不同形态土壤的高光谱数据,不断引入新方... 土壤有机质含量是反映土壤肥力的重要指标,对其进行动态监测是实施精准农业的重要措施。近年来,众多学者尝试采用土壤近地传感(proximal soil sensing),尤其是近地高光谱技术,在田间和实验室获取不同形态土壤的高光谱数据,不断引入新方法建立适用于不同地域和不同土壤类型的有机质含量的反演模型。该研究在实验室内利用ASD FS3采集了土壤高光谱数据,采用"重铬酸钾-外加热法"测得了土壤有机质含量;分析了土壤原始光谱反射率(R)与有机质含量的相关性,选取R^2>0.15的敏感波段的反射率;利用CWT对土壤原始光谱反射率(R)、光谱反射率的连续统去除(CR)进行不同尺度的分解,分析小波系数与土壤有机质含量的相关性,选取R^2>0.3的敏感波段的小波系数;利用R选取的波段信息和R-CWT,CRCWT的选取的小波系数,分别建立偏最小二乘回归(PLSR)、BP神经网络(BPNN)、支持向量机回归(SVMR)三种不同的土壤有机质含量反演模型。结果表明:相比R与土壤有机质含量的决定系数R^2,RCWT,CR-CWT变换后得到的小波系数与土壤有机质含量的决定系数R^2分别提高了0.15和0.2左右;CR-CWT-SVMR的模型效果最为显著,预测集的R^2和RMSE分别为0.83,4.02,RPD值为2.48,具有较高的估测精度,能够全面稳定地估算土壤有机质含量;CR-CWT-PLSR的模型精度与CR-CWT-BPNN,CRCWT-SVMR相比虽有一定差距,但是其计算量要明显小于非线性的BPNN和SVMR方法,具有模型简单、运算速度快等特点,对开发与设计田间传感器具有较大的应用价值。 展开更多
关键词 土壤有机质 高光谱 连续小波变换 偏最小二乘回归 BP神经网络 支持向量机回归
下载PDF
采用支持向量机回归的航班延误预测研究 被引量:39
20
作者 罗赟骞 陈志杰 +1 位作者 汤锦辉 朱永文 《交通运输系统工程与信息》 EI CSCD 北大核心 2015年第1期143-149,172,共8页
针对航班延误难以预测的问题,采用支持向量机回归方法建立航班到港延误预测模型.首先,采用相空间重构理论计算到港延误的延迟时间、嵌入维数和最大Lyapunov指数,发现到港延误时间序列存在混沌特性;将航班到港延误时间序列进行相空间重构... 针对航班延误难以预测的问题,采用支持向量机回归方法建立航班到港延误预测模型.首先,采用相空间重构理论计算到港延误的延迟时间、嵌入维数和最大Lyapunov指数,发现到港延误时间序列存在混沌特性;将航班到港延误时间序列进行相空间重构,并结合执飞该航班的航空器在上游机场的离港延误构建模型的输入向量;其次,将粒子群算法、差分进化算法和遗传算法进行比较,用于选择最优的模型参数,实验表明,差分进化算法能够以较高概率获得最优的预测模型;最后,比较该模型、单一因素预测模型和相关向量机预测模型的航班延误预测性能.结果表明,该模型的预测性能明显优于另外两种模型,能够有效预测航班延误. 展开更多
关键词 航空运输 航班延误预测 支持向量机回归 航班延误 相空间重构 差分进化算法
下载PDF
上一页 1 2 39 下一页 到第
使用帮助 返回顶部