期刊文献+
共找到29,514篇文章
< 1 2 250 >
每页显示 20 50 100
Research on practical power system stability analysis algorithm based on modified SVM 被引量:58
1
作者 Kaiyuan Hou Guanghui Shao +4 位作者 Haiming Wang Le Zheng Qiang Zhang Shuang Wu Wei Hu 《Protection and Control of Modern Power Systems》 2018年第1期129-135,共7页
Stable and safe operation of power grids is an important guarantee for economy development.Support Vector Machine(SVM)based stability analysis method is a significant method started in the last century.However,the SVM... Stable and safe operation of power grids is an important guarantee for economy development.Support Vector Machine(SVM)based stability analysis method is a significant method started in the last century.However,the SVM method has several drawbacks,e.g.low accuracy around the hyperplane and heavy computational burden when dealing with large amount of data.To tackle the above problems of the SVM model,the algorithm proposed in this paper is optimized from three aspects.Firstly,the gray area of the SVM model is judged by the probability output and the corresponding samples are processed.Therefore the clustering of the samples in the gray area is improved.The problem of low accuracy in the training of the SVM model in the gray area is improved,while the size of the sample is reduced and the efficiency is improved.Finally,by adjusting the model of the penalty factor in the SVM model after the clustering of the samples,the number of samples with unstable states being misjudged as stable is reduced.Test results on the IEEE 118-bus test system verify the proposed method. 展开更多
关键词 Security region analysis support vector machine K-means clustering
原文传递
基于机器学习算法的研究热点趋势预测模型对比与分析——BP神经网络、支持向量机与LSTM模型 被引量:58
2
作者 李静 徐路路 《现代情报》 CSSCI 2019年第4期23-33,共11页
[目的/意义]细粒度分析学科领域热点主题发展脉络并对利用机器学习算法对未来发展趋势进行准确预测研究。[方法/过程]提出一种基于机器学习算法的研究热点趋势预测方法与分析框架,以基因工程领域为例利用主题概率模型识别WOS核心集中论... [目的/意义]细粒度分析学科领域热点主题发展脉络并对利用机器学习算法对未来发展趋势进行准确预测研究。[方法/过程]提出一种基于机器学习算法的研究热点趋势预测方法与分析框架,以基因工程领域为例利用主题概率模型识别WOS核心集中论文摘要数据研究热点主题并进行主题演化关联构建,然后选取BP神经网络、支持向量机及LSTM模型等3种典型机器学习算法进行预测分析,最后利用RE指标和精准度指标评价机器学习算法预测效果并对基因工程领域在医药卫生、农业食品等方面研究趋势进行分析。[结果/结论]实验表明基于LSTM模型对热点主题未来发展趋势预测准确度最高,支持向量机预测效果次之,BP神经网络预测效果较差且预测稳定性不足,同时结合专家咨询和文献调研表明本文方法可快速识别基因领域研究主题及发展趋势,可为我国学科领域大势研判和架构调整提供决策支持和参考。 展开更多
关键词 热点主题 发展趋势 机器学习 LSTM模型 支持向量机模型
下载PDF
基于支持向量回归的电力变压器状态评估 被引量:40
3
作者 张哲 赵文清 +2 位作者 朱永利 武中利 杨建 《电力自动化设备》 EI CSCD 北大核心 2010年第4期81-84,共4页
为提高电力变压器状态评估的准确性,将变压器健康状态分为5级。鉴于支持向量机对小样本具有良好的拟合能力,而变压器数据具有小样本、贫信息的特点,提出了基于支持向量回归的电力变压器状态评估模型。将变压器的油色谱分析数据和电气实... 为提高电力变压器状态评估的准确性,将变压器健康状态分为5级。鉴于支持向量机对小样本具有良好的拟合能力,而变压器数据具有小样本、贫信息的特点,提出了基于支持向量回归的电力变压器状态评估模型。将变压器的油色谱分析数据和电气实验数据利用半岭模型确定变压器各个参数的分值,评分项目结果作为支持向量机的自变量,通过多层动态自适应优化算法优化了支持向量回归的参数,形成变权重的预测。实例验证了变压器状态评估模型的正确性及可行性,其结果更接近变压器的真实运行状态。 展开更多
关键词 支持向量回归 变压器 状态评估 油中溶解气体 变权重
下载PDF
支持向量机在遥感数据分类中的应用新进展 被引量:39
4
作者 张睿 马建文 《地球科学进展》 CAS CSCD 北大核心 2009年第5期555-562,共8页
支持向量机是一种基于统计学习理论的新型机器学习算法,它通过解算最优化问题,在高维特征空间中寻找最优分类超平面,从而解决复杂数据的分类及回归问题。随着应用面的不断扩大,支持向量机在遥感领域也得到了广泛关注。该算法已经成功的... 支持向量机是一种基于统计学习理论的新型机器学习算法,它通过解算最优化问题,在高维特征空间中寻找最优分类超平面,从而解决复杂数据的分类及回归问题。随着应用面的不断扩大,支持向量机在遥感领域也得到了广泛关注。该算法已经成功的应用于遥感数据的土地覆盖、土地利用分类,多时相遥感数据的变化检测,多源遥感数据信息融合等,并且在高光谱遥感数据处理中得到了广泛应用。综述了支持向量机算法在遥感数据分类中的应用。首先对支持向量机的理论进行简要介绍,进而综述了该算法在不同遥感问题中的应用进展,最后阐述了新型支持向量机算法的发展以及在遥感中的应用。 展开更多
关键词 支持向量机 遥感数据分类
下载PDF
基于SVM和k-NN结合的汉语交集型歧义切分方法 被引量:19
5
作者 李蓉 刘少辉 +1 位作者 叶世伟 史忠植 《中文信息学报》 CSCD 北大核心 2001年第6期13-18,共6页
本文提出了基于支持向量机 (SVM)和k 近邻 (k NN)相结合的一种分类方法 ,用于解决交集型伪歧义字段。首先将交集型伪歧义字段的歧义切分过程形式化为一个分类过程并给出一种歧义字段的表示方法。求解过程是一个有教师学习过程 ,从歧义... 本文提出了基于支持向量机 (SVM)和k 近邻 (k NN)相结合的一种分类方法 ,用于解决交集型伪歧义字段。首先将交集型伪歧义字段的歧义切分过程形式化为一个分类过程并给出一种歧义字段的表示方法。求解过程是一个有教师学习过程 ,从歧义字段中挑选出一些高频伪歧义字段 ,人工将其正确切分并代入SVM训练。对于待识别歧义字段通过使用SVM和k NN相结合的分类算法即可得到切分结果。实验结果显示使用此方法可以正确处理 91 .6%的交集歧义字段 ,而且该算法具有一定的稳定性。 展开更多
关键词 支持向量 类代表点 交集型歧义 汉语自动分词 歧义切分 SVM K-近邻 分类方法
下载PDF
基于支持向量的单类分类方法综述 被引量:27
6
作者 吴定海 张培林 +1 位作者 任国全 陈非 《计算机工程》 CAS CSCD 北大核心 2011年第5期187-189,共3页
研究基于支持向量机理论和单类分类思想的2种支持向量域数据描述模型,即单分类支持向量机和支持向量描述模型,分析2类模型之间的区别和联系以及参数的优化设置,总结支持向量域单分类方法存在的缺点以及目前对这2类支持向量描述模型研究... 研究基于支持向量机理论和单类分类思想的2种支持向量域数据描述模型,即单分类支持向量机和支持向量描述模型,分析2类模型之间的区别和联系以及参数的优化设置,总结支持向量域单分类方法存在的缺点以及目前对这2类支持向量描述模型研究的改进方向。 展开更多
关键词 单类分类 支持向量 数据描述 模式识别
下载PDF
应用支持向量机评价土壤环境质量 被引量:25
7
作者 姜雪 卢文喜 +1 位作者 杨青春 赵海卿 《中国环境科学》 EI CAS CSCD 北大核心 2014年第5期1229-1235,共7页
基于野外采样和室内分析相结合的方法,采用电感耦合等离子体质谱法(ICP-MS)对羊草沟煤矿研究区表层土壤样品中的Cd、Cr、Zn、Pb和Cu含量进行测定,应用非线性支持向量机模型中的分类支持向量机,选用sigmoid核函数,利用MATLAB编写程序,进... 基于野外采样和室内分析相结合的方法,采用电感耦合等离子体质谱法(ICP-MS)对羊草沟煤矿研究区表层土壤样品中的Cd、Cr、Zn、Pb和Cu含量进行测定,应用非线性支持向量机模型中的分类支持向量机,选用sigmoid核函数,利用MATLAB编写程序,进行土壤环境质量评价,并利用模糊综合评判法对评价结果进行验证.在此基础上,运用对应分析方法对样品和变量进行了关联分析,进一步了解重金属污染特征.评价结果表明,研究区土壤环境质量多为Ⅰ类,与模糊综合评判法的相同率达到91.67%,将支持向量机用于土壤环境质量评价是可行的.相比于传统的评价方法,支持向量机采用结构风险最小化原则,将复杂的非线性问题转化为线性问题,成功的解决了多分类、高维运算等问题. 展开更多
关键词 支持向量机 土壤环境质量评价 重金属 羊草沟煤矿 support vector MACHINE (SVM)
下载PDF
Prediction of Pressure Drop of Slurry Flow in Pipeline by Hybrid Support Vector Regression and Genetic Algorithm Model 被引量:25
8
作者 S.K. Lahiri K.C. Ghanta 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2008年第6期841-848,共8页
This paper describes a robust support vector regression (SVR) methodology, which can offer superior performance for important process engineering problems. The method incorporates hybrid support vector regression an... This paper describes a robust support vector regression (SVR) methodology, which can offer superior performance for important process engineering problems. The method incorporates hybrid support vector regression and genetic algorithm technique (SVR-GA) for efficient tuning of SVR meta-parameters. The algorithm has been applied for prediction of pressure drop of solid liquid slurry flow. A comparison with selected correlations in the lit- erature showed that the developed SVR correlation noticeably improved the prediction of pressure drop over a wide range of operating conditions, physical properties, and pipe diameters. 展开更多
关键词 support vector regression genetic algorithm slurry pressure drop
下载PDF
Overexpression of heme oxygenase-1 protects smooth muscle cells against oxidative injury and inhibits cell proliferation 被引量:17
9
作者 MIN ZHANG, BAO HuI ZHANG, LI CHEN, WEI AN1 Institute of Sports Medicine, The Third Hospital, Peking University, Beijing 100083, China 2Department of Cell Biology, Capital University of Medical Sciences, Beijing 100054, China 《Cell Research》 SCIE CAS CSCD 2002年第2期123-132,共10页
To investigate whether the expression of exogenous heme oxygenase-1 (HO-1) gene within vascular smooth muscle cells (VSMC) could protect the cells from free radical attack and inhibit cell proliferation, we establishe... To investigate whether the expression of exogenous heme oxygenase-1 (HO-1) gene within vascular smooth muscle cells (VSMC) could protect the cells from free radical attack and inhibit cell proliferation, we established an in vitro transfection of human HO-1 gene into rat VSMC mediated by a retroviral vector. The results showed that the profound expression of HO-1 protein as well as HO activity was 1.8- and 2.0-fold increased respectively in the transfected cells compared to the non-transfected ones. The treatment of VSMC with different concentrations of H2O2 led to the remarkable cell damage as indicated by survival rate and LDH leakage. However, the resistance of the HO-1 transfected VSMC against H2O2 was significantly raised. This protective effect was dramatically diminished when the transfected VSMC were pretreated with ZnPP-IX, a specific inhibitor of HO, for 24 h. In addition, we found that the growth potential of the transfected cells was significantly inhibited directly by increased activity of HO-1, and this effect might be related to decreased phosphorylation of MAPK. These results suggest that the overexpression of introduced hHO-1 is potentially able to reduce the risk factors of atherosclerosis, partially due to its cellular protection against oxidative injury and to its inhibitory effect on cellular proliferation. 展开更多
关键词 Animals Blotting Northern Blotting Southern Blotting Western Cell Division Cell Survival Cells Cultured Cyclic GMP Dose-Response Relationship Drug Flow Cytometry Free Radicals Genetic vectors Heme Oxygenase (Decyclizing) Heme Oxygenase-1 Humans Hydrogen Peroxide MAP Kinase Signaling System Male Membrane Proteins Muscle Smooth Myocytes Smooth Muscle OXIDANTS Oxidative Stress Oxygen Phosphorylation RATS Rats Sprague-Dawley Research support Non-U.S. Gov't RETROVIRIDAE Time Factors Transfection
下载PDF
Nonlinear Model Predictive Control Based on Support Vector Machine with Multi-kernel 被引量:22
10
作者 包哲静 皮道映 孙优贤 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2007年第5期691-697,共7页
Multi-kernel-based support vector machine (SVM) model structure of nonlinear systems and its specific identification method is proposed, which is composed of a SVM with linear kernel function followed in series by a... Multi-kernel-based support vector machine (SVM) model structure of nonlinear systems and its specific identification method is proposed, which is composed of a SVM with linear kernel function followed in series by a SVM with spline kernel function. With the help of this model, nonlinear model predictive control can be transformed to linear model predictive control, and consequently a unified analytical solution of optimal input of multi-step-ahead predictive control is possible to derive. This algorithm does not require online iterative optimization in order to be suitable for real-time control with less calculation. The simulation results of pH neutralization process and CSTR reactor show the effectiveness and advantages of the presented algorithm. 展开更多
关键词 nonlinear model predictive control support vector machine with multi-kernel nonlinear system identification kernel function
下载PDF
关联规则挖掘Apriori算法的研究与改进 被引量:18
11
作者 谢宗毅 《杭州电子科技大学学报(自然科学版)》 2006年第3期78-82,共5页
关联规则挖掘是数据挖掘领域中的重要研究方向,该文在分析关联规则挖掘Apriori算法原理和性能的基础上,指出了该算法存在着两点不足:扫描事务数据库的次数和连接成高维候选项目集时的比较次数太多。并提出了一种效率更高的S_Apriori算法... 关联规则挖掘是数据挖掘领域中的重要研究方向,该文在分析关联规则挖掘Apriori算法原理和性能的基础上,指出了该算法存在着两点不足:扫描事务数据库的次数和连接成高维候选项目集时的比较次数太多。并提出了一种效率更高的S_Apriori算法,该算法通过采用新的数据结构和原理,克服了传统Apriori算法的缺点,从而大大提高了运算效率。 展开更多
关键词 关联规则 频繁项目集 支持度 事务向量
下载PDF
Fault diagnosis of a mine hoist using PCA and SVM techniques 被引量:20
12
作者 CHANG Yan-wei WANG Yao-cai +1 位作者 LIU Tao WANG Zhi-jie 《Journal of China University of Mining and Technology》 EI 2008年第3期327-331,共5页
A new method based on principal component analysis (PCA) and support vector machines (SVMs) is proposed for fault diagnosis of mine hoists. PCA is used to extract the principal features associated with the gearbox. Th... A new method based on principal component analysis (PCA) and support vector machines (SVMs) is proposed for fault diagnosis of mine hoists. PCA is used to extract the principal features associated with the gearbox. Then, with the irrelevant gearbox variables removed, the remaining gearbox, the hydraulic system and the wire rope parameters were used as input to a multi-class SVM. The SVM is first trained by using the one class-based multi-class optimization algorithm and it is then applied to fault identification. Comparison of various methods showed the PCA-SVM method successfully removed redundancy to solve the dimensionality curse. These results show that the algorithm using the RBF kernel function for the SVM had the best classification properties. 展开更多
关键词 fault diagnosis principal component analysis support vector machines mine hoist
下载PDF
Support vector machines approach to mean particle size of rock fragmentation due to bench blasting prediction 被引量:19
13
作者 史秀志 周健 +2 位作者 吴帮标 黄丹 魏威 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第2期432-441,共10页
Aiming at the problems of the traditional method of assessing distribution of particle size in bench blasting, a support vector machines (SVMs) regression methodology was used to predict the mean particle size (X50... Aiming at the problems of the traditional method of assessing distribution of particle size in bench blasting, a support vector machines (SVMs) regression methodology was used to predict the mean particle size (X50) resulting from rock blast fragmentation in various mines based on the statistical learning theory. The data base consisted of blast design parameters, explosive parameters, modulus of elasticity and in-situ block size. The seven input independent variables used for the SVMs model for the prediction of X50 of rock blast fragmentation were the ratio of bench height to drilled burden (H/B), ratio of spacing to burden (S/B), ratio of burden to hole diameter (B/D), ratio of stemming to burden (T/B), powder factor (Pf), modulus of elasticity (E) and in-situ block size (XB). After using the 90 sets of the measured data in various mines and rock formations in the world for training and testing, the model was applied to 12 another blast data for validation of the trained support vector regression (SVR) model. The prediction results of SVR were compared with those of artificial neural network (ANN), multivariate regression analysis (MVRA) models, conventional Kuznetsov method and the measured X50 values. The proposed method shows promising results and the prediction accuracy of SVMs model is acceptable. 展开更多
关键词 rock fragmentation BLASTING mean panicle size (X50) support vector machines (SVMs) PREDICTION
下载PDF
On-line Estimation of Biomass in Fermentation Process Using Support Vector Machine 被引量:15
14
作者 王建林 于涛 金翠云 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第3期383-388,共6页
Biomass is a key factor in fermentation process, directly influencing the performance of the fermentation system as well as the quality and yield of the targeted product. Therefore, the on-line estimation of biomass i... Biomass is a key factor in fermentation process, directly influencing the performance of the fermentation system as well as the quality and yield of the targeted product. Therefore, the on-line estimation of biomass is indispensable. The soft-sensor based on support vector machine (SVM) for an on-line biomass estimation was analyzed in detail, and the improved SVM called the weighted least squares support vector machine was presented to follow the dynamic feature of fermentation process. The model based on the modified SVM was developed and demonstrated using simulation experiments. 展开更多
关键词 BIOMASS on-line estimation support vector machine FERMENTATION
下载PDF
Intrusion detection using rough set classification 被引量:16
15
作者 张连华 张冠华 +2 位作者 郁郎 张洁 白英彩 《Journal of Zhejiang University Science》 EI CSCD 2004年第9期1076-1086,共11页
Recently machine learning-based intrusion detection approaches have been subjected to extensive researches because they can detect both misuse and anomaly. In this paper, rough set classification (RSC), a modern learn... Recently machine learning-based intrusion detection approaches have been subjected to extensive researches because they can detect both misuse and anomaly. In this paper, rough set classification (RSC), a modern learning algorithm, is used to rank the features extracted for detecting intrusions and generate intrusion detection models. Feature ranking is a very critical step when building the model. RSC performs feature ranking before generating rules, and converts the feature ranking to minimal hitting set problem addressed by using genetic algorithm (GA). This is done in classical approaches using Support Vector Machine (SVM) by executing many iterations, each of which removes one useless feature. Compared with those methods, our method can avoid many iterations. In addition, a hybrid genetic algorithm is proposed to increase the convergence speed and decrease the training time of RSC. The models generated by RSC take the form of'IF-THEN' rules, which have the advantage of explication. Tests and comparison of RSC with SVM on DARPA benchmark data showed that for Probe and DoS attacks both RSC and SVM yielded highly accurate results (greater than 99% accuracy on testing set). 展开更多
关键词 Intrusion detection Rough set classification support vector machine Genetic algorithm
下载PDF
基于CLBP和支持向量诱导字典学习的煤岩识别方法 被引量:18
16
作者 孙继平 陈浜 《煤炭学报》 EI CAS CSCD 北大核心 2017年第12期3338-3348,共11页
针对现有煤岩识别方法在训练样本不充足情况下的识别效果普遍不太理想这一情况,提出了一种基于完备局部二值模式(CLBP)和支持向量诱导字典学习的煤岩识别方法。该方法分4大步完成:(1)提取煤岩图像的多尺度CLBP特征向量;(2)对训练样本的C... 针对现有煤岩识别方法在训练样本不充足情况下的识别效果普遍不太理想这一情况,提出了一种基于完备局部二值模式(CLBP)和支持向量诱导字典学习的煤岩识别方法。该方法分4大步完成:(1)提取煤岩图像的多尺度CLBP特征向量;(2)对训练样本的CLBP特征向量进行支持向量诱导字典学习,得到一组煤岩表征字典、煤岩类别权向量和偏移量;(3)计算测试样本在煤岩表征字典上的表示即编码向量;(4)采用判别函数完成测试样本编码向量的类别判定。结果表明:与现有其他常用方法相比,所提出方法有着更高的正确识别率,特别是在训练样本不充分的随机抽样实验条件下,其正确识别率仍然很高;耗时的字典学习并没有影响到所提出方法的实时性;所提出方法占用的存储量不受训练样本数量的制约,这在一定程度上为将来硬件实现带来了便利。 展开更多
关键词 煤岩识别 CLBP 支持向量 字典学习
下载PDF
Identification of fruit and branch in natural scenes for citrus harvesting robot using machine vision and support vector machine 被引量:18
17
作者 Lü Qiang Cai Jianrong +2 位作者 Liu Bin Deng Lie Zhang Yajing 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2014年第2期115-121,共7页
With the decrease of agricultural labor and the increase of production cost,the researches on citrus harvesting robot(CHR)have received more and more attention in recent years.For the success of robotic harvesting and... With the decrease of agricultural labor and the increase of production cost,the researches on citrus harvesting robot(CHR)have received more and more attention in recent years.For the success of robotic harvesting and the safety of robot,the identification of mature citrus fruit and obstacle is the priority of robotic harvesting.In this work,a machine vision system,which consisted of a color CCD camera and a computer,was developed to achieve these tasks.Images of citrus trees were captured under sunny and cloudy conditions.Due to varying degrees of lightness and position randomness of fruits and branches,red,green,and blue values of objects in these images are changed dramatically.The traditional threshold segmentation is not efficient to solve these problems.Multi-class support vector machine(SVM),which succeeds by morphological operation,was used to simultaneously segment the fruits and branches in this study.The recognition rate of citrus fruit was 92.4%,and the branch of which diameter was more than 5 pixels,could be recognized.The results showed that the algorithm could be used to detect the fruits and branches for CHR. 展开更多
关键词 CITRUS machine vision citrus harvesting robot(CHR) branch IDENTIFICATION multi-class support vector machine(SVM)
原文传递
基于KNN算法和10折交叉验证法的支持向量选取算法 被引量:18
18
作者 牛晓太 《华中师范大学学报(自然科学版)》 CAS 北大核心 2014年第3期335-338,共4页
经典支持向量机算法具有较高的时空复杂度,这导致其很难广泛被应用.为此,该文基于支持向量分布的先验知识,把KNN算法和10折交叉验证方法结合起来,提出了一个支持向量预选取算法.该算法从原始样本集中选取k个邻近样本,并计算出这k个邻近... 经典支持向量机算法具有较高的时空复杂度,这导致其很难广泛被应用.为此,该文基于支持向量分布的先验知识,把KNN算法和10折交叉验证方法结合起来,提出了一个支持向量预选取算法.该算法从原始样本集中选取k个邻近样本,并计算出这k个邻近样本中异类样本所占比例,如果该比例超过了所给定的阈值q,就选择这些异类样本作为预取的支持向量.在此过程中,采用10折交叉验证法来确定k与q的最佳值.两组仿真实验表明所提算法选择出的支持向量而形成的分类器分类准确率更高而且耗时还较少. 展开更多
关键词 机器学习 支持向量 K近邻算法 10折交叉验证法
下载PDF
Flame image recognition of alumina rotary kiln by artificial neural network and support vector machine methods 被引量:18
19
作者 张红亮 邹忠 +1 位作者 李劼 陈湘涛 《Journal of Central South University of Technology》 EI 2008年第1期39-43,共5页
Based on the Fourier transform, a new shape descriptor was proposed to represent the flame image. By employing the shape descriptor as the input, the flame image recognition was studied by the methods of the artificia... Based on the Fourier transform, a new shape descriptor was proposed to represent the flame image. By employing the shape descriptor as the input, the flame image recognition was studied by the methods of the artificial neural network(ANN) and the support vector machine(SVM) respectively. And the recognition experiments were carried out by using flame image data sampled from an alumina rotary kiln to evaluate their effectiveness. The results show that the two recognition methods can achieve good results, which verify the effectiveness of the shape descriptor. The highest recognition rate is 88.83% for SVM and 87.38% for ANN, which means that the performance of the SVM is better than that of the ANN. 展开更多
关键词 rotary kiln flame image image recognition shape descriptor artificial neural network support vector machine
下载PDF
On-line chatter detection using servo motor current signal in turning 被引量:17
20
作者 LIU HongQil CHEN QmgHa +3 位作者 LI Bin MAO XinYong MAO KuanMin PENG FangYu 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第12期3119-3129,共11页
Chatter often poses limiting factors on the achievable productivity and is very harmful to machining processes. In order to avoid effectively the harm of cutting chatter,a method of cutting state monitoring based on f... Chatter often poses limiting factors on the achievable productivity and is very harmful to machining processes. In order to avoid effectively the harm of cutting chatter,a method of cutting state monitoring based on feed motor current signal is proposed for chatter identification before it has been fully developed. A new data analysis technique,the empirical mode decomposition(EMD),is used to decompose motor current signal into many intrinsic mode functions(IMF) . Some IMF's energy and kurtosis regularly change during the development of the chatter. These IMFs can reflect subtle mutations in current signal. Therefore,the energy index and kurtosis index are used for chatter detection based on those IMFs. Acceleration signal of tool as reference is used to compare with the results from current signal. A support vector machine(SVM) is designed for pattern classification based on the feature vector constituted by energy index and kurtosis index. The intelligent chatter detection system composed of the feature extraction and the SVM has an accuracy rate of above 95% for the identification of cutting state after being trained by experimental data. The results show that it is feasible to monitor and predict the emergence of chatter behavior in machining by using motor current signal. 展开更多
关键词 chatter detection current signal empirical mode decomposition (EMD) support vector machine (SVM)
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部