Sunspot number, sunspot area and sunspot unit area are usually used to show sunspot activity. In this paper, periodicity of sunspot activity of modern solar cycles has been investigated through analyzing the monthly m...Sunspot number, sunspot area and sunspot unit area are usually used to show sunspot activity. In this paper, periodicity of sunspot activity of modern solar cycles has been investigated through analyzing the monthly mean val- ues of the three indices in the time interval of May 1874 to May 2004 by use of the wavelet transform. Their global power spectra and local power spectra are given while the statistical tests of these spectra are taken into account. The main results are (1) the local wavelet power spectrum of the sunspot number seems like that of the sunspot area, indicat- ing that the periodicity of the both indices is similar. The local power spectrum of the sunspot unit area resembles the local power spectra of the previous two indices, but looks more complicated. (2) the possible periods in sunspot activity are about 10.6 (or 10.9 years for the sunspot unit area), 31, and 42 years, and the period of about 10.6 years is statisti- cally significant in the considered time. For the periods of about 31 and 42 years, their power peaks are under the 95% confidence level line but over the mean red-noise spectral line, and for the other rest periods, their power peaks are even under the mean red-noise spectral line, which are sta- tistically insignificant. (3) the local power of the three periods is higher in the late stage than in the early stage of the con- sidered time. (4) the period characteristics of the three indi- ces, shown in the global power spectra and the local power spectra, are similar but there is difference in detail.展开更多
The long-term fluctuation of the Schwabe period (LSP) of sunspots number (SSN) has been found to have high correlation with the variation of the length-of-day (LOD) in low frequency by using the data of smoothed month...The long-term fluctuation of the Schwabe period (LSP) of sunspots number (SSN) has been found to have high correlation with the variation of the length-of-day (LOD) in low frequency by using the data of smoothed monthly mean SSN during 1818-1999 and the method of wavelet transform. Analyses indicate that the maximum correlation coefficient between the series of LSP and LOD during 1892-1997 is about 0.9, with a time lag of about 5 years for the LOD related to the LSP. Though the maximum correlation coefficients between the LSP and the other two LOD series (1818-1997) reduce to about 0.4, they remain over the thresholds of 95% confidence level. This suggests new evidence for possible impact of solar activity on the long-term fluctuation of the earth rotation.展开更多
文摘Sunspot number, sunspot area and sunspot unit area are usually used to show sunspot activity. In this paper, periodicity of sunspot activity of modern solar cycles has been investigated through analyzing the monthly mean val- ues of the three indices in the time interval of May 1874 to May 2004 by use of the wavelet transform. Their global power spectra and local power spectra are given while the statistical tests of these spectra are taken into account. The main results are (1) the local wavelet power spectrum of the sunspot number seems like that of the sunspot area, indicat- ing that the periodicity of the both indices is similar. The local power spectrum of the sunspot unit area resembles the local power spectra of the previous two indices, but looks more complicated. (2) the possible periods in sunspot activity are about 10.6 (or 10.9 years for the sunspot unit area), 31, and 42 years, and the period of about 10.6 years is statisti- cally significant in the considered time. For the periods of about 31 and 42 years, their power peaks are under the 95% confidence level line but over the mean red-noise spectral line, and for the other rest periods, their power peaks are even under the mean red-noise spectral line, which are sta- tistically insignificant. (3) the local power of the three periods is higher in the late stage than in the early stage of the con- sidered time. (4) the period characteristics of the three indi- ces, shown in the global power spectra and the local power spectra, are similar but there is difference in detail.
基金This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 19973011 and 19833030), the Major Project of Chinese Academy of Sciences (Grant No. KJ951-1-304) and the Shanghai Science and Technology Department Foundation
文摘The long-term fluctuation of the Schwabe period (LSP) of sunspots number (SSN) has been found to have high correlation with the variation of the length-of-day (LOD) in low frequency by using the data of smoothed monthly mean SSN during 1818-1999 and the method of wavelet transform. Analyses indicate that the maximum correlation coefficient between the series of LSP and LOD during 1892-1997 is about 0.9, with a time lag of about 5 years for the LOD related to the LSP. Though the maximum correlation coefficients between the LSP and the other two LOD series (1818-1997) reduce to about 0.4, they remain over the thresholds of 95% confidence level. This suggests new evidence for possible impact of solar activity on the long-term fluctuation of the earth rotation.