Sums of convergent series for any desired number of terms, which may be infinite, are estimated very accurately by establishing definite rational polynomials. For infinite number of terms the sum infinite is obtained ...Sums of convergent series for any desired number of terms, which may be infinite, are estimated very accurately by establishing definite rational polynomials. For infinite number of terms the sum infinite is obtained by taking the asymptotic limit of the rational polynomial. A rational function with second-degree polynomials both in the numerator and denominator is found to produce excellent results. Sums of series with different characteristics such as alternating signs are considered for testing the performance of the proposed approach.展开更多
In this paper, we discuss the relation between the partial sums of Jacobi serier on an elliptic region and the corresponding partial sums of Fourier series. From this we derive a precise approximation formula by the p...In this paper, we discuss the relation between the partial sums of Jacobi serier on an elliptic region and the corresponding partial sums of Fourier series. From this we derive a precise approximation formula by the partial sums of Jacobi series on an elliptic region.展开更多
In this article we shall examine several different types of figurative numbers which have been studied extensively over the period of 2500 years, and currently scattered on hundreds of websites. We shall discuss their...In this article we shall examine several different types of figurative numbers which have been studied extensively over the period of 2500 years, and currently scattered on hundreds of websites. We shall discuss their computation through simple recurrence relations, patterns and properties, and mutual relationships which have led to curious results in the field of elementary number theory. Further, for each type of figurative numbers we shall show that the addition of first finite numbers and infinite addition of their inverses often require new/strange techniques. We sincerely hope that besides experts, students and teachers of mathematics will also be benefited with this article.展开更多
Utilization of the shift operator to represent Euler polynomials as polynomials of Appell type leads directly to its algebraic properties, its relations with powers sums;may be all its relations with Bernoulli polynom...Utilization of the shift operator to represent Euler polynomials as polynomials of Appell type leads directly to its algebraic properties, its relations with powers sums;may be all its relations with Bernoulli polynomials, Bernoulli numbers;its recurrence formulae and a very simple formula for calculating simultaneously Euler numbers and Euler polynomials. The expansions of Euler polynomials into Fourier series are also obtained;the formulae for obtaining all π<sup>m</sup> as series on k<sup>-m</sup> and for expanding functions into series of Euler polynomials.展开更多
In this paper, we show that new modified double cosine trigonometric sums introduced in [1] are inappropriate, the class of double sequences Jintroduced there is unusable for such sums and consequently the results obt...In this paper, we show that new modified double cosine trigonometric sums introduced in [1] are inappropriate, the class of double sequences Jintroduced there is unusable for such sums and consequently the results obtained in it are completely incorrect. We here introduce appropriate modified double cosine trigonometric sums making the class Jusable considering a particular double cosine trigonometric series.展开更多
Let Sigma (infinity)(n=1) X-n be a series of independent random variables with at least one non-degenerate X-n, and let F-n be the distribution function of its partial sums S-n = Sigma (n)(k=1) X-k. Motivated by Hilde...Let Sigma (infinity)(n=1) X-n be a series of independent random variables with at least one non-degenerate X-n, and let F-n be the distribution function of its partial sums S-n = Sigma (n)(k=1) X-k. Motivated by Hildebrand's work in [1], the authors investigate the a.s. convergence of Sigma (infinity)(n=1) X-n under a hypothesis that Sigma (infinity)(n=1) rho (X-n, c(n)) = infinity whener Sigma (infinity)(n=1) c(n) diverges, where the notation rho (X,c) denotes the Levy distance between the random variable X and the constant c. The principal result of this paper shows that the hypothesis is the condition under which the convergence of F-n(x(0)) with the limit value 0 < L-0 < 1, together with the essential convergence of Sigma (infinity)(n=1) X-n, is both sufficient and necessary in order for the series Sigma (infinity)(n=1) X-n to a.s. coverage. Moreover, if the essential convergence of Sigma (infinity)(n=1) X-n is strengthened to limsup(n=infinity) P(\S-n\ < K) = 1 for some K > 0, the hypothesis is already equivalent to the a.s. convergence of Sigma (infinity)(n=1) X-n. Here they have not only founded a very general limit theorem, but improved the related result in Hildebrand([1]) as well.展开更多
文摘Sums of convergent series for any desired number of terms, which may be infinite, are estimated very accurately by establishing definite rational polynomials. For infinite number of terms the sum infinite is obtained by taking the asymptotic limit of the rational polynomial. A rational function with second-degree polynomials both in the numerator and denominator is found to produce excellent results. Sums of series with different characteristics such as alternating signs are considered for testing the performance of the proposed approach.
文摘In this paper, we discuss the relation between the partial sums of Jacobi serier on an elliptic region and the corresponding partial sums of Fourier series. From this we derive a precise approximation formula by the partial sums of Jacobi series on an elliptic region.
文摘In this article we shall examine several different types of figurative numbers which have been studied extensively over the period of 2500 years, and currently scattered on hundreds of websites. We shall discuss their computation through simple recurrence relations, patterns and properties, and mutual relationships which have led to curious results in the field of elementary number theory. Further, for each type of figurative numbers we shall show that the addition of first finite numbers and infinite addition of their inverses often require new/strange techniques. We sincerely hope that besides experts, students and teachers of mathematics will also be benefited with this article.
文摘Utilization of the shift operator to represent Euler polynomials as polynomials of Appell type leads directly to its algebraic properties, its relations with powers sums;may be all its relations with Bernoulli polynomials, Bernoulli numbers;its recurrence formulae and a very simple formula for calculating simultaneously Euler numbers and Euler polynomials. The expansions of Euler polynomials into Fourier series are also obtained;the formulae for obtaining all π<sup>m</sup> as series on k<sup>-m</sup> and for expanding functions into series of Euler polynomials.
文摘In this paper, we show that new modified double cosine trigonometric sums introduced in [1] are inappropriate, the class of double sequences Jintroduced there is unusable for such sums and consequently the results obtained in it are completely incorrect. We here introduce appropriate modified double cosine trigonometric sums making the class Jusable considering a particular double cosine trigonometric series.
文摘Let Sigma (infinity)(n=1) X-n be a series of independent random variables with at least one non-degenerate X-n, and let F-n be the distribution function of its partial sums S-n = Sigma (n)(k=1) X-k. Motivated by Hildebrand's work in [1], the authors investigate the a.s. convergence of Sigma (infinity)(n=1) X-n under a hypothesis that Sigma (infinity)(n=1) rho (X-n, c(n)) = infinity whener Sigma (infinity)(n=1) c(n) diverges, where the notation rho (X,c) denotes the Levy distance between the random variable X and the constant c. The principal result of this paper shows that the hypothesis is the condition under which the convergence of F-n(x(0)) with the limit value 0 < L-0 < 1, together with the essential convergence of Sigma (infinity)(n=1) X-n, is both sufficient and necessary in order for the series Sigma (infinity)(n=1) X-n to a.s. coverage. Moreover, if the essential convergence of Sigma (infinity)(n=1) X-n is strengthened to limsup(n=infinity) P(\S-n\ < K) = 1 for some K > 0, the hypothesis is already equivalent to the a.s. convergence of Sigma (infinity)(n=1) X-n. Here they have not only founded a very general limit theorem, but improved the related result in Hildebrand([1]) as well.
基金Supported by National Natural Science Foundation of China (11871258)the Young Backbone Teachers in Henan Province (2020GGJS194)the Young Backbone Teachers in Luoyang Normal College (2019XJGGJS-10)。