Cell discontinuous transmission(Cell DTx)is a key technology to mitigate inter-cell interference(ICI)in ultra-dense networks(UDNs).The aim of this work is to understand the impact of Cell DTx on physical-layer sum rat...Cell discontinuous transmission(Cell DTx)is a key technology to mitigate inter-cell interference(ICI)in ultra-dense networks(UDNs).The aim of this work is to understand the impact of Cell DTx on physical-layer sum rates of SBSs and link-layer quality-of-service(QoS)performance in multiuser UDNs.In this work,we develop a cross-layer framework for capacity analysis in multiuser UDNs with Cell DTx.In particular,we first extend the traditional one-dimensional effective capacity model to a new multidimensional effective capacity model to derive the sum rate and the effective capacity.Moreover,we propose a new iterative bisection search algorithm that is capable of approximating QoS performance.The convergence of this new algorithm to a unique QoS exponent vector is later proved.Finally,we apply this framework to the round-robin and the max-C/I scheduling policies.Simulation results show that our framework is accurate in approximating 1)queue length distribution,2)delay distribution and 3)sum rates under the above two scheduling policies,and further show that with the Cell DTx,systems have approximately 30% higher sum rate and 35% smaller average delay than those in full-buffer scenarios.展开更多
This paper discusses about the optimal mode allocation for the heterogeneous networks, in which the network can schedule users working in the device-to-device (D2D) mode or cellular mode. The D2D user is allowed to ...This paper discusses about the optimal mode allocation for the heterogeneous networks, in which the network can schedule users working in the device-to-device (D2D) mode or cellular mode. The D2D user is allowed to reuse the uplink resource of cellular system and the problem is formed as a sum-capacity optimization issue with outage constraints for both cellular and D2D links. The method for the optimal user proration is proved to be divided into three cases according to the total user density: when the total user density is small, the optimal proration trends to all users utilizing one mode; when the total user density is large, the optimal proration is all of users choosing D2D mode; and when the total user density situates in the between, there is a unique optimal transmission mode proportion for the hybrid networks to maximize its sumcapacity. The simulation results demonstrate the validity of the conclusions in the analysis part.展开更多
To keep the secrecy performance from being badly influenced by untrusted relay(UR), a multi-UR network through amplify-and-forward(AF) cooperative scheme is put forward, which takes relay weight and harmful factor int...To keep the secrecy performance from being badly influenced by untrusted relay(UR), a multi-UR network through amplify-and-forward(AF) cooperative scheme is put forward, which takes relay weight and harmful factor into account. A nonzero-sum game is established to capture the interaction among URs and detection strategies. Secrecy capacity is investigated as game payoff to indicate the untrusted behaviors of the relays. The maximum probabilities of the behaviors of relay and the optimal system detection strategy can be obtained by using the proposed algorithm.展开更多
In this paper, the effect of channel estimation errors upon the Zero Forcing (ZF) precoding Multiple Input Multiple Output Broadcast (MIMO BC) systems was studied. Based on the two kinds of Gaussian estimation error m...In this paper, the effect of channel estimation errors upon the Zero Forcing (ZF) precoding Multiple Input Multiple Output Broadcast (MIMO BC) systems was studied. Based on the two kinds of Gaussian estimation error models, the performance analysis is conducted under different power allocation strategies. Analysis and simulation show that if the covariance of channel estimation errors is independent of the received Signal to Noise Ratio (SNR), imperfect channel knowledge deteriorates the sum capacity and the Bit Error Rate (BER) performance severely. However, under the situation of orthogonal training and the Minimum Mean Square Error (MMSE) channel estimation, the sum ca- pacity and BER performance are consistent with those of the perfect Channel State Information (CSI) with only a performance degradation.展开更多
We investigate the sum capacity of Block Diagonalization precoding Multiple Input Mul-tiple Output Broadcast Channels(BD MIMO BC) with imperfect Channel State Information(CSI) at the base station.Since it is difficult...We investigate the sum capacity of Block Diagonalization precoding Multiple Input Mul-tiple Output Broadcast Channels(BD MIMO BC) with imperfect Channel State Information(CSI) at the base station.Since it is difficult to obtain the exact expression,a lower and an upper bounds of the sum capacity under Gaussian channel estimation errors are drived instead.Analyses show that the gap between two bounds is considerably tight at all Signal to Noise Ratio(SNR) region.From the lower bound of the sum capacity,we can see that the multiplexing gain tends to be zero at high SNR region,which indicates that the BD MIMO BC system with channel estimation errors is interference-limited at high SNR.展开更多
文摘Cell discontinuous transmission(Cell DTx)is a key technology to mitigate inter-cell interference(ICI)in ultra-dense networks(UDNs).The aim of this work is to understand the impact of Cell DTx on physical-layer sum rates of SBSs and link-layer quality-of-service(QoS)performance in multiuser UDNs.In this work,we develop a cross-layer framework for capacity analysis in multiuser UDNs with Cell DTx.In particular,we first extend the traditional one-dimensional effective capacity model to a new multidimensional effective capacity model to derive the sum rate and the effective capacity.Moreover,we propose a new iterative bisection search algorithm that is capable of approximating QoS performance.The convergence of this new algorithm to a unique QoS exponent vector is later proved.Finally,we apply this framework to the round-robin and the max-C/I scheduling policies.Simulation results show that our framework is accurate in approximating 1)queue length distribution,2)delay distribution and 3)sum rates under the above two scheduling policies,and further show that with the Cell DTx,systems have approximately 30% higher sum rate and 35% smaller average delay than those in full-buffer scenarios.
基金supported by the National Science and Technology Major Projects (2012ZX03003011, 2012ZX03003007)the National Basic Research and Development Program of China (2012CB316005)the Joint Funds of NSFC-Guangdong (U1035001)
文摘This paper discusses about the optimal mode allocation for the heterogeneous networks, in which the network can schedule users working in the device-to-device (D2D) mode or cellular mode. The D2D user is allowed to reuse the uplink resource of cellular system and the problem is formed as a sum-capacity optimization issue with outage constraints for both cellular and D2D links. The method for the optimal user proration is proved to be divided into three cases according to the total user density: when the total user density is small, the optimal proration trends to all users utilizing one mode; when the total user density is large, the optimal proration is all of users choosing D2D mode; and when the total user density situates in the between, there is a unique optimal transmission mode proportion for the hybrid networks to maximize its sumcapacity. The simulation results demonstrate the validity of the conclusions in the analysis part.
基金Supported by the National Natural Science Foundation of China(No.61101223)
文摘To keep the secrecy performance from being badly influenced by untrusted relay(UR), a multi-UR network through amplify-and-forward(AF) cooperative scheme is put forward, which takes relay weight and harmful factor into account. A nonzero-sum game is established to capture the interaction among URs and detection strategies. Secrecy capacity is investigated as game payoff to indicate the untrusted behaviors of the relays. The maximum probabilities of the behaviors of relay and the optimal system detection strategy can be obtained by using the proposed algorithm.
基金by the National Natural Science Foundation of China (No.60496311).
文摘In this paper, the effect of channel estimation errors upon the Zero Forcing (ZF) precoding Multiple Input Multiple Output Broadcast (MIMO BC) systems was studied. Based on the two kinds of Gaussian estimation error models, the performance analysis is conducted under different power allocation strategies. Analysis and simulation show that if the covariance of channel estimation errors is independent of the received Signal to Noise Ratio (SNR), imperfect channel knowledge deteriorates the sum capacity and the Bit Error Rate (BER) performance severely. However, under the situation of orthogonal training and the Minimum Mean Square Error (MMSE) channel estimation, the sum ca- pacity and BER performance are consistent with those of the perfect Channel State Information (CSI) with only a performance degradation.
基金Supported by Chinese 863 Program (2006AA01Z268)the National Natural Science Foundation of China (No. 60496311)
文摘We investigate the sum capacity of Block Diagonalization precoding Multiple Input Mul-tiple Output Broadcast Channels(BD MIMO BC) with imperfect Channel State Information(CSI) at the base station.Since it is difficult to obtain the exact expression,a lower and an upper bounds of the sum capacity under Gaussian channel estimation errors are drived instead.Analyses show that the gap between two bounds is considerably tight at all Signal to Noise Ratio(SNR) region.From the lower bound of the sum capacity,we can see that the multiplexing gain tends to be zero at high SNR region,which indicates that the BD MIMO BC system with channel estimation errors is interference-limited at high SNR.