Sucrose synthase (Sus) is a key enzyme in the breakdown of sucrose and is considered a biochemical marker for sink strength, especially in crop species, based on mutational and gene suppression studies. It remains e...Sucrose synthase (Sus) is a key enzyme in the breakdown of sucrose and is considered a biochemical marker for sink strength, especially in crop species, based on mutational and gene suppression studies. It remains elusive, however, whether, or to what extent, increase in Sus activity may enhance sink development. We aimed to address this question by expressing a potato Sus gene in cotton where Sus expression has been previously shown to be critical for normal seed and fiber development. Segregation analyses at T1 generation followed by studies in homozygous progeny lines revealed that increased Sus activity in cotton (1) enhanced leaf expansion with the effect evident from young leaves emerging from shoot apex; (2) improved early seed development, which reduced seed abortion, hence enhanced seed set, and (3) promoted fiber elongation. In young leaves of Sus overexpressing lines, fructose concentrations were significantly increased whereas, in elongating fibers, both fructose and glucose levels were increased. Since hexoses contribute little to osmolality in leaves, in contrast to developing fibers, it is concluded that high Sus activity promotes leaf development independently of osmotic regulation, probably through sugar signaling. The analyses also showed that doubling the Sus activity in 0-d cotton seeds increased their fresh weight by about 30%. However, further increase in Sus activity did not lead to any further increase in seed weight, indicating an upper limit for the Sus overexpression effect. Finally, based on the observed additive effect on fiber yield from increased fiber length and seed number, a new strategy is proposed to increase cotton fiber yield by improving seed development as a whole, rather than solely focusing on manipulating fiber growth.展开更多
The effect of water deficit on stem reserve mobilization and sink activity in wheat (Triticum aestivum L.) cultivars, viz., C306 (drought tolerant) and PBW343 (drought sensitive) was studied. Drought was maintained in...The effect of water deficit on stem reserve mobilization and sink activity in wheat (Triticum aestivum L.) cultivars, viz., C306 (drought tolerant) and PBW343 (drought sensitive) was studied. Drought was maintained in pot raised plants by withholding irrigation at 95 days after sowing (DAS), i.e. just five days before the initiation of anthesis. Drought induced a significant reduction in mean biomass of all the internodes of sensitive cultivar as compared to those of tolerant one. Mobilized dry matter and mobilization efficiency were observed to be higher in the internodes of tolerant cultivar, both under control and stress conditions, which resulted in enhanced translocation of stem reserves to the grains. Water soluble carbohydrates (WSC), which mainly occur as fructans, were observed to be higher in the internodes of tolerant cultivar than those of sensitive one. When drought was applied, fructans were mobilized more effectively from the internodes of tolerant cultivar. A significantly higher sucrose synthase activity in the grains of tolerant cultivar, under drought conditions, increased the sink strength by unloading the assimilates in the sink, thereby increasing further mobilization of assimilates to the grains. Grains of sensitive cultivar attained maturity much earlier as compared to the tolerant one, both under control and stress conditions. The longer duration of grain maturation in tolerant cultivar supported enhanced mobilization of stem reserves, thus restricting heavy decrease in grain yield, under stress conditions, as compared to the sensitive cultivar. It may, therefore, be concluded that certain characteristics viz., enhanced capability of fructan storage, higher mobilization efficiency, stronger sink activity and longer duration of grain maturation might help the drought tolerant cultivar in coping the stress展开更多
本研究利用开放式空气中CO2浓度增加(Free Air CO2 Enrichment,FACE)试验平台,研究CO2浓度升高200 μmol·mol^-1下,水稻灌浆早期籽粒大小、生长速率、可溶性碳水化合物和淀粉含量及蔗糖转化酶活性等在开花后20 d内的变化动态.结...本研究利用开放式空气中CO2浓度增加(Free Air CO2 Enrichment,FACE)试验平台,研究CO2浓度升高200 μmol·mol^-1下,水稻灌浆早期籽粒大小、生长速率、可溶性碳水化合物和淀粉含量及蔗糖转化酶活性等在开花后20 d内的变化动态.结果表明,与对照相比,FACE处理加快了灌浆早期籽粒的发育进程,尤其加快了籽粒宽度达到最大的日程,籽粒大小和籽粒灌浆速率提前3 d达到最大值;成熟时籽粒的长宽积FACE下的比对照下的提高了4.5%,但粒重无差异;FACE下开花后2~5 d内籽粒中的还原糖和蔗糖的含量及细胞壁转化酶和细胞质转化酶的活性显著高于对照下的,但淀粉含量和可溶性酸性转化酶活性则无显著差异.从结果推论,FACE加速水稻灌浆前期籽粒生长发育与其花后早期颖果内蔗糖合成和转运水平之间可能存在内在联系.展开更多
Dynamic changes of sucrose, fructose, glucose contents and differences in activities of sucrose synthase, vacuolar invertase, and cell wall bound invertase in rice grain after flowering stage were studied under natura...Dynamic changes of sucrose, fructose, glucose contents and differences in activities of sucrose synthase, vacuolar invertase, and cell wall bound invertase in rice grain after flowering stage were studied under natural and high temperatures by using two japonica rice varieties Koshihikari and Sasanishiki. In rice grains, the sucrose synthase activity was higher than that of invertase, which was significantly correlated with starch accumulation rate, indicating that the sucrose synthase played an important role in sucrose degradation and starch synthesis. Under high temperature, the significant increase in grain sucrose content without any increase in fructose and glucose contents, suggested that the high temperature treatment enhanced sucrose accumulation, while diminished sucrose degradation in rice grains. Compared with the control plants, the decrease in activities of sucrose synthase, vacuolar invertase, and cell wall bound invertase with high temperature treated plants indicated that the deceleration of sucrose-degradation was related to the decrease in activities of sucrose synthase and invertase.展开更多
文摘Sucrose synthase (Sus) is a key enzyme in the breakdown of sucrose and is considered a biochemical marker for sink strength, especially in crop species, based on mutational and gene suppression studies. It remains elusive, however, whether, or to what extent, increase in Sus activity may enhance sink development. We aimed to address this question by expressing a potato Sus gene in cotton where Sus expression has been previously shown to be critical for normal seed and fiber development. Segregation analyses at T1 generation followed by studies in homozygous progeny lines revealed that increased Sus activity in cotton (1) enhanced leaf expansion with the effect evident from young leaves emerging from shoot apex; (2) improved early seed development, which reduced seed abortion, hence enhanced seed set, and (3) promoted fiber elongation. In young leaves of Sus overexpressing lines, fructose concentrations were significantly increased whereas, in elongating fibers, both fructose and glucose levels were increased. Since hexoses contribute little to osmolality in leaves, in contrast to developing fibers, it is concluded that high Sus activity promotes leaf development independently of osmotic regulation, probably through sugar signaling. The analyses also showed that doubling the Sus activity in 0-d cotton seeds increased their fresh weight by about 30%. However, further increase in Sus activity did not lead to any further increase in seed weight, indicating an upper limit for the Sus overexpression effect. Finally, based on the observed additive effect on fiber yield from increased fiber length and seed number, a new strategy is proposed to increase cotton fiber yield by improving seed development as a whole, rather than solely focusing on manipulating fiber growth.
文摘The effect of water deficit on stem reserve mobilization and sink activity in wheat (Triticum aestivum L.) cultivars, viz., C306 (drought tolerant) and PBW343 (drought sensitive) was studied. Drought was maintained in pot raised plants by withholding irrigation at 95 days after sowing (DAS), i.e. just five days before the initiation of anthesis. Drought induced a significant reduction in mean biomass of all the internodes of sensitive cultivar as compared to those of tolerant one. Mobilized dry matter and mobilization efficiency were observed to be higher in the internodes of tolerant cultivar, both under control and stress conditions, which resulted in enhanced translocation of stem reserves to the grains. Water soluble carbohydrates (WSC), which mainly occur as fructans, were observed to be higher in the internodes of tolerant cultivar than those of sensitive one. When drought was applied, fructans were mobilized more effectively from the internodes of tolerant cultivar. A significantly higher sucrose synthase activity in the grains of tolerant cultivar, under drought conditions, increased the sink strength by unloading the assimilates in the sink, thereby increasing further mobilization of assimilates to the grains. Grains of sensitive cultivar attained maturity much earlier as compared to the tolerant one, both under control and stress conditions. The longer duration of grain maturation in tolerant cultivar supported enhanced mobilization of stem reserves, thus restricting heavy decrease in grain yield, under stress conditions, as compared to the sensitive cultivar. It may, therefore, be concluded that certain characteristics viz., enhanced capability of fructan storage, higher mobilization efficiency, stronger sink activity and longer duration of grain maturation might help the drought tolerant cultivar in coping the stress
文摘本研究利用开放式空气中CO2浓度增加(Free Air CO2 Enrichment,FACE)试验平台,研究CO2浓度升高200 μmol·mol^-1下,水稻灌浆早期籽粒大小、生长速率、可溶性碳水化合物和淀粉含量及蔗糖转化酶活性等在开花后20 d内的变化动态.结果表明,与对照相比,FACE处理加快了灌浆早期籽粒的发育进程,尤其加快了籽粒宽度达到最大的日程,籽粒大小和籽粒灌浆速率提前3 d达到最大值;成熟时籽粒的长宽积FACE下的比对照下的提高了4.5%,但粒重无差异;FACE下开花后2~5 d内籽粒中的还原糖和蔗糖的含量及细胞壁转化酶和细胞质转化酶的活性显著高于对照下的,但淀粉含量和可溶性酸性转化酶活性则无显著差异.从结果推论,FACE加速水稻灌浆前期籽粒生长发育与其花后早期颖果内蔗糖合成和转运水平之间可能存在内在联系.
文摘Dynamic changes of sucrose, fructose, glucose contents and differences in activities of sucrose synthase, vacuolar invertase, and cell wall bound invertase in rice grain after flowering stage were studied under natural and high temperatures by using two japonica rice varieties Koshihikari and Sasanishiki. In rice grains, the sucrose synthase activity was higher than that of invertase, which was significantly correlated with starch accumulation rate, indicating that the sucrose synthase played an important role in sucrose degradation and starch synthesis. Under high temperature, the significant increase in grain sucrose content without any increase in fructose and glucose contents, suggested that the high temperature treatment enhanced sucrose accumulation, while diminished sucrose degradation in rice grains. Compared with the control plants, the decrease in activities of sucrose synthase, vacuolar invertase, and cell wall bound invertase with high temperature treated plants indicated that the deceleration of sucrose-degradation was related to the decrease in activities of sucrose synthase and invertase.