期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
On some new travelling wave structures to the(3+1)-dimensional Boiti-Leon-Manna-Pempinelli model
1
作者 Kalim U.Tariq Ahmet Bekir Muhammad Zubair 《Journal of Ocean Engineering and Science》 SCIE 2024年第2期99-111,共13页
In this article,the(1/G')-expansion method,the Bernoulli sub-ordinary differential equation method and the modified Kudryashov method are implemented to construct a variety of novel analytical solutions to the(3+1... In this article,the(1/G')-expansion method,the Bernoulli sub-ordinary differential equation method and the modified Kudryashov method are implemented to construct a variety of novel analytical solutions to the(3+1)-dimensional Boiti-Leon-Manna-Pempinelli model representing the wave propagation through incompressible fluids.The linearization of the wave structure in shallow water necessitates more critical wave capacity conditions than it does in deep water,and the strong nonlinear properties are perceptible.Some novel travelling wave solutions have been observed including solitons,kink,periodic and rational solutions with the aid of the latest computing tools such as Mathematica or Maple.The physical and analytical properties of several families of closed-form solutions or exact solutions and rational form function solutions to the(3+1)-dimensional Boiti-Leon-Manna-Pempinelli model problem are examined using Mathematica. 展开更多
关键词 The(3+1)-dimensional Boiti-Leon-Manna-Pempinelli model The(1/G')-expansion method The Bernoulli sub-ode method The modified Kudryashov method
原文传递
非线性演化方程的孤立波解(英文) 被引量:5
2
作者 王明亮 李向正 聂惠 《应用数学》 CSCD 北大核心 2006年第3期460-468,共9页
用齐次平衡原则和辅助微分方程方法得到了6个重要的n次非线性演化方程的孤立波解.辅助微分方程方法的主要思想是借助简单的可解微分方程的解去构造复杂的非线性演化方程的行进波解.这里简单的可解微分方程称为辅助微分方程.本文使用的... 用齐次平衡原则和辅助微分方程方法得到了6个重要的n次非线性演化方程的孤立波解.辅助微分方程方法的主要思想是借助简单的可解微分方程的解去构造复杂的非线性演化方程的行进波解.这里简单的可解微分方程称为辅助微分方程.本文使用的辅助方程有双曲正割幂型解或双曲正切幂型解. 展开更多
关键词 n次非线性 广义KDV方程 广义BOUSSINESQ方程 广义BURGERS方程 辅助微分方程方法
下载PDF
Traveling wave structures of some fourth-order nonlinear partial differential equations
3
作者 Handenur Esen Neslihan Ozdemir +1 位作者 Aydin Secer Mustafa Bayram 《Journal of Ocean Engineering and Science》 SCIE 2023年第2期124-132,共9页
This study presents a large family of the traveling wave solutions to the two fourth-order nonlinear partial differential equations utilizing the Riccati-Bernoulli sub-ODE method.In this method,utilizing a traveling w... This study presents a large family of the traveling wave solutions to the two fourth-order nonlinear partial differential equations utilizing the Riccati-Bernoulli sub-ODE method.In this method,utilizing a traveling wave transformation with the aid of the Riccati-Bernoulli equation,the fourth-order equation can be transformed into a set of algebraic equations.Solving the set of algebraic equations,we acquire the novel exact solutions of the integrable fourth-order equations presented in this research paper.The physical interpretation of the nonlinear models are also detailed through the exact solutions,which demonstrate the effectiveness of the presented method.The Bäcklund transformation can produce an infinite sequence of solutions of the given two fourth-order nonlinear partial differential equations.Finally,3D graphs of some derived solutions in this paper are depicted through suitable parameter values. 展开更多
关键词 Fourth-order equations Riccati-Bernoulli sub-ode method Traveling wave solution Bäcklund transformation
原文传递
Exact Solutions for Fractional Differential-Difference Equations by an Extended Riccati Sub-ODE Method 被引量:2
4
作者 冯青华 《Communications in Theoretical Physics》 SCIE CAS CSCD 2013年第5期521-527,共7页
In this paper, an extended Riccati sub-ODE method is proposed to establish new exact solutions for fractional differential-difference equations in the sense of modified Riemann-Liouville derivative. By a fractional co... In this paper, an extended Riccati sub-ODE method is proposed to establish new exact solutions for fractional differential-difference equations in the sense of modified Riemann-Liouville derivative. By a fractional complex transformation, a given fractional differential-difference equation can be turned into another differential-difference equation of integer order. The validity of the method is illustrated by applying it to solve the fractional Hybrid lattice equation and the fractional relativistic Toda lattice system. As a result, some new exact solutions including hyperbolic function solutions, trigonometric function solutions and rational solutions are established. 展开更多
关键词 fractional differential-difference equations exact solutions Riccati sub-ode method fractional complex transformation
原文传递
非线性色散K(n+1,n+1)方程的精确解 被引量:2
5
作者 李修勇 李保安 李向正 《河南科技大学学报(自然科学版)》 CAS 2007年第3期83-85,共3页
利用一阶辅助微分方程方法和齐次平衡原则,求出了非线性色散K(n+1,n+1)方程的若干含参数的精确行波解。
关键词 齐次平衡原则 辅助微分方程方法 非线性色散K(n+1 n+1)方程 精确解
下载PDF
Solitons and Other Solutions for the Generalized KdV-mKdV Equation with Higher-order Nonlinear Terms 被引量:1
6
作者 ZAYED Elsayd M. E. AL-NOWEHY Abdul-Ghani 《Journal of Partial Differential Equations》 CSCD 2016年第3期218-245,共28页
The generalized sub-ODE method, the rational (G'/G)-expansion method, the exp-function method and the sine-cosine method are applied for constructing many traveling wave solutions of nonlinear partial differential ... The generalized sub-ODE method, the rational (G'/G)-expansion method, the exp-function method and the sine-cosine method are applied for constructing many traveling wave solutions of nonlinear partial differential equations (PDEs). Some illustrative equations are investigated by these methods and many hyperbolic, trigonometric and rational function solutions are found. We apply these methods to obtain the exact solutions for the generalized KdV-mKdV (GKdV-mKdV) equation with higherorder nonlinear terms. The obtained results confirm that the proposed methods are efficient techniques for analytic treatment of a wide variety of nonlinear partial differential equations in mathematical physics. We compare between the results yielding from these methods. Also, a comparison between our new results in this paper and the well-known results are given. 展开更多
关键词 Generalized sub-ode method rational (G'/G)-expansion method exp-functionmethod sine-cosine method generalized KdV-mKdV equation with higher-order nonlinear terms exact solutions solitary wave solutions.
原文传递
Double-Parameter Solutions of Projective Riccati Equations and Their Applications 被引量:1
7
作者 WANG Ming-Liang LI Er-Qiang LI Xiang-Zheng 《Communications in Theoretical Physics》 SCIE CAS CSCD 2007年第1期1-9,共9页
The purpose of the present paper is twofold. First, the projective Riccati equations (PREs for short) are resolved by means of a linearized theorem, which was known in the literature. Based on the signs and values o... The purpose of the present paper is twofold. First, the projective Riccati equations (PREs for short) are resolved by means of a linearized theorem, which was known in the literature. Based on the signs and values of coeffcients of PREs, the solutions with two arbitrary parameters of PREs can be expressed by the hyperbolic functions, the trigonometric functions, and the rational functions respectively, at the same time the relation between the components of each solution to PREs is also implemented. Second, more new travelling wave solutions for some nonlinear PDEs, such as the Burgers equation, the mKdV equation, the NLS^+ equation, new Hamilton amplitude equation, and so on, are obtained by using Sub-ODE method, in which PREs are taken as the Sub-ODEs. The key idea of this method is that the travelling wave solutions of nonlinear PDE can be expressed by a polynomial in two variables, which are the components of each solution to PREs, provided that the homogeneous balance between the higher order derivatives and nonlinear terms in the equation is considered. 展开更多
关键词 projective Riccati equations linearized theorem homogeneous balance sub-ode method travelling wave solutions nonlinear PDE
下载PDF
基于Riccati-Bernoulli辅助常微分方程的Davey-Stewartson方程的行波解 被引量:9
8
作者 杨小锋 邓子辰 魏乙 《应用数学和力学》 CSCD 北大核心 2015年第10期1067-1075,共9页
Riccati-Bernoulli辅助常微分方程方法可以用来构造非线性偏微分方程的行波解.利用行波变换,将非线性偏微分方程化为非线性常微分方程,再利用Riccati-Bernoulli方程将非线性常微分方程化为非线性代数方程组,求解非线性代数方程组就能直... Riccati-Bernoulli辅助常微分方程方法可以用来构造非线性偏微分方程的行波解.利用行波变换,将非线性偏微分方程化为非线性常微分方程,再利用Riccati-Bernoulli方程将非线性常微分方程化为非线性代数方程组,求解非线性代数方程组就能直接得到非线性偏微分方程的行波解.对Davey-Stewartson方程应用这种方法,得到了该方程的精确行波解.同时也得到了该方程的一个Bcklund变换.所得结果与首次积分法的结果作了比较.Riccati-Bernoulli辅助常微分方程方法是一种简单、有效地求解非线性偏微分方程精确解的方法. 展开更多
关键词 Riccati—Bernoulli辅助常微分方程方法 Davey—Stewartson方程 行波解 BACKLUND变换
下载PDF
New Optical Soliton Solutions of the Perturbed Fokas-Lenells Equation 被引量:2
9
作者 Maha S.M.Shehata Hadi Rezazadeh +2 位作者 Emad H.M.Zahran Eric Tala-Tebue Ahmet Bekir 《Communications in Theoretical Physics》 SCIE CAS CSCD 2019年第11期1275-1280,共6页
In this article, we employ the perturbed Fokas-Lenells equation(FLE), which represents recent electronic communications. The Riccati-Bernoulli Sub-ODE method which does not depend on the balance rule is used for thefi... In this article, we employ the perturbed Fokas-Lenells equation(FLE), which represents recent electronic communications. The Riccati-Bernoulli Sub-ODE method which does not depend on the balance rule is used for thefirst time to obtain the new exact and solitary wave solutions of this equation. This technique is direct, effective and reduces the large volume of calculations. 展开更多
关键词 PERTURBED Fokas-Lenells equation(FLE) Riccati-Bernoulli sub-ode method optical soliton SOLUTIONS
原文传递
利用推广的Riccati-Bernoulli sub-ODE方法求解非线性方程的精确解 被引量:1
10
作者 那仁满都拉 尹晓军 杨联贵 《内蒙古大学学报(自然科学版)》 CAS 北大核心 2022年第6期561-569,共9页
首先对Riccati-Bernoulli sub-ODE方法进行了推广,然后基于该方法,并借助Mathematica数学软件求解了近赤道非线性Rossby波振幅演变所满足的带有耗散项的非线性mKdV方程和地形Rossby波振幅满足的非线性KdV-mKdV方程的精确解,并绘制了双... 首先对Riccati-Bernoulli sub-ODE方法进行了推广,然后基于该方法,并借助Mathematica数学软件求解了近赤道非线性Rossby波振幅演变所满足的带有耗散项的非线性mKdV方程和地形Rossby波振幅满足的非线性KdV-mKdV方程的精确解,并绘制了双曲函数型解的三维图形以及对应的平面图形。通过分析说明推广后的Riccati-Bernoulli sub-ODE方法,得到这两个非线性方程更多形式的精确解,即精确行波解、双曲函数型精确行波解和三角函数型精确行波解,补充了现有文献报道的结果。 展开更多
关键词 Riccati-Bernoulli sub-ode方法 行波解 双曲函数型解
下载PDF
用辅助常微分方程求解复合KdV方程的行波解(英文)
11
作者 席忠红 李海翼 《应用数学》 CSCD 北大核心 2013年第4期876-880,共5页
利用辅助常微分方程得到复合KdV方程的精确行波解.辅助常微分方程法的核心思路是:部分复杂非线性波动方程的行波解可以通过求解一些简单的、可解的微分方程——辅助常微分方程的方法得到解决.
关键词 复合KdV方程 非线性偏微分方程 辅助微分方程 行波解 非线性微分方程
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部